Foundations of Data Mining

http://www.cohenwang.com/edith/dataminingclass2017

Instructors:

Edith Cohen Haim Kaplan Amos Fiat

Lecture 1
Course logistics

- Tuesdays 16:00-19:00, Sherman 002
- Slides for (most or all) lectures will be posted on the course web page: http://www.cohenwang.com/edith/dataminingclass2017
- Office hours: Email instructors to set a time
- Grade: 70% final exam, 30% on 5 problem sets
Data

Collected: network activity, people activity, measurements, search/assistant queries, location, online interactions and transactions, text, media,

Generated (processed) data: parameters in large scale model, partly curated raw data,

- **Scale**: petabytes -> exabytes -> ...
- **Diverse formats**: relational, logs, text, media, measurements
- **Location**: distributed, streamed,
Data to Information

Mining and learning from data
- Aggregates, statistics, properties
- Models that allow us to generalize/predict

Scalable (efficient, fast) computation:
- Data available as streamed or distributed (limit data movement for efficiency/privacy)
- Platforms that use computation resources (Map-reduce, Tensor-Flow,...) across scales:
 - GPUs, multi-core CPUs, Data Center, wide area, federated (on device) computing

Algorithm design:
- “linear” processing on large data,
- trade-off accuracy and computation cost

Social issues:
- Privacy, Fairness
Topics for this course

Selection criteria of topics:
- Broad demonstrated applicability
- Promote deeper understanding of concepts
- Simplicity, elegance, principled
- Instructor bias

Topics:
- Data modeled as: key value pairs, metric (vectors, sets), graphs
- Properties, features, statistics of interest
- Summary structures for efficient storage/movement/computation
- Algorithms for distributed/parallel/streamed computation
- Data representations that support generalization (recover missing relations, identify spurious ones)
- Data privacy
Today

- Key-value pairs data
- Intro to summary structures (sketches)
- Computation over streamed/distributed data

- Frequent keys: The Misra Gries structure
- Set membership: Bloom Filters
- Counting: Morris counters
Key-Value pairs

Data element $e \in D$ has key and value $(e\.key, e\.value)$

Example data
- Search queries
- IP network packets/flow records
- Online interactions
- Parameter updates (training ML model)
Data element $e \in D$ has key and value $(e\.key, e\.value)$

Example tasks/queries
- Sum/Max value
- Membership: Is 🐙 in D?
- How many distinct keys?
- Very frequent keys (heavy hitters)
Data access

Distributed data/parallel computation

GPUs, CPUs, VMs, Servers, wide area, devices
- Distributed data sources
- Distribute for faster/scalable computation

Challenges: Limit data movement, Support updates to D

Data streams

Data read in one (or few) sequential passes
- Can not be revisited (IP traffic)
- I/O efficiency (sequential access is cheaper than random access)

Challenges: "State" must be much smaller than data size, Support updates to D

Edith Cohen
Summary Structures (Sketches)

D: data set; $f(D)$: some statistics/properties

$Sketch(D)$: A summary of D that acts as “surrogate” and allows us to estimate $f(D)$

$\hat{f}()$: estimator we apply to $Sketch(D)$ to estimate $f(D)$

Examples: random samples, projections, histograms, ...

Why sketch?
Data can be too large to:
- Store in full for long or even short term
- Transmit
- Slow/costly processing of exact queries
- Data updates do not necessitate full recomputation

- Multi-objective $f(q, D)$, $\hat{f}(q, Sketch(D))$ sketch supports multiple query types
Composable sketches

Distributed data/parallelize computation

- Sketch($A \cup B$) from Sketch(A) and Sketch(B)

Only sketch structure moves between locations

Suffices to specify merging two sketches

Edith Cohen
Streaming sketches

- \(\text{Sketch}(A \cup \{e\}) \) from \(\text{Sketch}(A) \) and element \(\{e\} \)

Weaker requirement than fully composable

Only “state” maintained is the sketch structure

Streamed data

Sketch Sketch Sketch Sketch Sketch Sketch Sketch

Edith Cohen
Sketch API

- Initialization Sketch(∅)
- Estimator specification \(\hat{f}(\text{Sketch}(D)) \)
- Merge two sketches Sketch(A ∪ B) from Sketch(A) and Sketch(B)
- Process an element \(e = (e\.key, e\.val): \text{Sketch}(A ∪ e) \) from Sketch(A) and \(e \)
- Delete \(e \)

- Seek to optimize sketch-size vs. estimate quality

Q: \(f(D) \) ? \(\rightarrow \hat{f}(\text{Sketch}(D)) \)
Easy sketches: min, max, sum, ...

Element values: 32, 112, 14, 9, 37, 83, 115, 2,

Exact, composable, Sketch is just a single register s:

Sum
- **Initialize:** $s \leftarrow 0$
- **Process element** $e : s \leftarrow s + e.\text{val}$
- **Merge** $s, s' : s \leftarrow s + s'$
- **Delete element** $e : s \leftarrow s - e.\text{val}$
- **Query:** return s

Max
- **Initialize:** $s \leftarrow 0$
- **Process element** $e : s \leftarrow \max(s, e.\text{val})$
- **Merge** $s, s' : s \leftarrow \max(s, s')$
- **Query:** return s

No delete support
Frequent Keys

- Data is streamed or distributed
- Very large #distinct keys, huge #elements
- Find the keys that occur very often

Occur in 3/11 elements

Example Applications:
- Networking: Find “elephant” IP flows
- Search engines: Find the most frequent queries
- Text analysis: Frequent terms

Zipf law: Frequency of \(i^{th} \) heaviest key \(\propto i^{-s} \)

Say top 10% keys in 90% of elements

https://brenocon.com/blog/2009/05
Frequent Keys: Exact Solution

Exact solution:
- Create a counter for each distinct key on its first occurrence
- When processing an element with key x, increment the counter of x

Properties: Fully composable, exact, even supports deletions, recovers all frequencies

Problem: Structure size is $n = \text{number of distinct keys}$. What can we do with size $k \ll n$?

Solution: Sketch that got re-discovered many times \[MG1982, DLM2002, KSP2003, MAA2006\]
Frequent Keys: Streaming sketch [Misra Gries 1982]

Sketch size parameter k: Use (at most) k counters indexed by keys. Initially, no counters.

Processing an element with key x

- If we already have a counter for x, increment it.
- Else, if there is no counter, but there are fewer than k counters, create a counter for x initialized to 1.
- Else, decrease all counters by 1. Remove 0 counters.

Query: #occurrences of x?

- If we have a counter for x, return its value.
- Else, return 0.

Clearly an under-estimate. What can we say precisely?

$$n = 6 \text{ #distinct}$$
$$k = 3 \text{ #structure size}$$
$$m = 11 \text{ #element}$$
MG sketch: Analysis

Lemma: Estimate is smaller than true count by at most \(\frac{m-m'}{k+1} \)

- \(m' \): Sum of counters in structure; \(m \): #elements in stream; \(k \): structure size

We charge each “missed count” to a “decrease” step:
- If key in structure, any decrease in count is due to “decrease” step.
- Element processed and not counted results in decrease step.

We bound the number of “decrease” steps

Each decrease step removes \(k \) “counts” from structure, together with input element, it results in \(k + 1 \) “uncounted” elements.

\[\Rightarrow \text{Number of decrement steps} \leq \frac{m-m'}{k+1} \]
MG sketch: Analysis (contd.)

Estimate is smaller than true count by at most \(\frac{m-m'}{k+1} \)

⇒ We get good estimates for \(x \) with frequency \(\gg \frac{m-m'}{k+1} \)

- **Error bound** is inversely proportional to \(k \). Typical tradeoff of sketch-size and quality of estimate.
- **Error bound** can be computed with sketch: Track \(m \) (element count), know \(m' \) (can be computed from structure) and \(k \).
- MG works because typical frequency distributions have few very popular keys “Zipf law”
Making MG fully Composable: Merging two MG sketches [MAA 2006, ACHPWY 2012]

Basic merge:
- If a key x is in both structures, keep one counter with sum of the two counts
- If a key x is in one structure, keep the counter

Reduce: If there are more than k counters
- Take the $(k + 1)^{th}$ largest counter
- Subtract its value from all other counters
- Delete non-positive counters
Merging two Misra Gries Sketches

Basic Merge:
Reduce since there are more than $k = 3$ counters:

- Take the $(k + 1)^{th} = 4^{th}$ largest counter
- Subtract its value (2) from all other counters
- Delete non-positive counters
Merging MG Summaries: Correctness

Claim: Final merged sketch has at most k counters

Proof: We subtract the $(k + 1)^{th}$ largest from everything, so at most the k largest can remain positive.

Claim: For each key, merged sketch count is smaller than true count by at most $\frac{m - m'}{k+1}$
Merging MG Summaries: Correctness

Claim: For each key, merged sketch count is smaller than true count by at most \(\frac{m - m'}{k+1} \)

Proof: “Counts” for key \(x \) can be missed in part 1, part 2, or in the reduce component of the merge.

We add up the bounds on the misses

Part 1:
Total elements: \(m_1 \)
Count in structure: \(m_1' \)
Count missed: \(\leq \frac{m_1 - m_1'}{k+1} \)

“Reduce” missed count per key is at most \(R = \) the \((k + 1) \)th largest count before reduce

Part 2:
Total elements: \(m_2 \)
Count in structure: \(m_2' \)
Count missed: \(\leq \frac{m_2 - m_2'}{k+1} \)
Merging MG Summaries: Correctness

⇒ “Count missed” of one key in merged sketch is at most

\[
\frac{m_1 - m_1'}{k+1} + \frac{m_2 - m_2'}{k+1} + R
\]

Part 1:
Total elements: \(m_1 \)
Count in structure: \(m_1' \)
Count missed: \(\leq \frac{m_1 - m_1'}{k+1} \)

Part 2:
Total elements: \(m_2 \)
Count in structure: \(m_2' \)
Count missed: \(\leq \frac{m_2 - m_2'}{k+1} \)

“Reduce” missed count per key is at most \(R = \text{the } (k + 1)^{\text{th}} \text{ largest count before reduce} \)
Merging MG Summaries: Correctness

Counted elements in structure:

- After basic merge and before reduce: $m'_1 + m'_2$
- After reduce: m'

Claim: $m'_1 + m'_2 - m' \geq R(k + 1)$

Proof: R are erased in the reduce step in each of the $k + 1$ largest counters. Maybe more in smaller counters.

"Count missed" of one key is at most

$$\frac{m_1 - m'_1}{k+1} + \frac{m_2 - m'_2}{k+1} + R \leq \frac{1}{k+1} (m_1 + m_2 - m') = \frac{m - m'}{k+1}$$

Edith Cohen
Probabilistic structures

- Misra Gries is a *deterministic* structure
- The outcome is determined uniquely by the input
- Probabilistic structures/algorithms can be much more powerful
 - *Provide privacy/robustness to outliers*
 - *Provide efficiency/size*
Set membership

- Data is streamed or distributed
- Very large #distinct keys, huge #elements, large representation of keys

Structure that supports membership queries: Is in \(D \)?

Example applications:

- **Spell checker:** Insert a corpus of words. Check if word is in corpus.
- **Web crawler:** Insert all urls that were visited. Check if current url was explored.
- **Distributed caches:** Maintain a ”summary” of keys of cached resources. Send requests to a cache that has the resource.
- **Blacklisted IP addresses:** Intercept traffic from blacklisted sources

Exact solution: Dictionary (hash map) structure. **Problem:** stores representation of all keys
Set membership: Bloom Filters [Bloom 1970]

- Very popular in many applications
- Probabilistic data structure
- Reduces representation size to few bits (8) per key
- False positives possible, no false negatives
- Tradeoff between size and false positive rate
- Composable
- Analysis relies on having independent random hash functions (practice work well, theoretical issues)
Independent Random Hash Functions

Simplified and Idealized

Domain D of keys; probability distribution F over R

Distribution H of hash functions $h: D \rightarrow R$ with the following properties:

Over $h \sim H$

- For each $x \in D$, $h(x) \sim F$ (over $h \sim H$)
- $h(x)$ are independent for different keys $x \in D$

We use random hash functions as a way to have random draws with “memory”: Attach a “permanent” random value to a key
Set membership warmup: Hash solution

Parameter: \(m \)
Structure: Boolean array of size \(m \)
Random hash function \(h \) where \(h(x) \sim U[1, \ldots, m] \)

Initialize:
Declare boolean array \(S \) of size \(m \);
For \(i = 1, \ldots, m \): \(S[i] \leftarrow F \)

Process element with key \(x \):
\(S[h(x)] \leftarrow T \)

Membership query for \(x \):
Return \(S[h(x)] \)

Merge: Two structures of same size and same hash function. Take bitwise OR
Hash solution: Probability of a false positive

\(m \): Structure size; \(n \) number of distinct keys inserted
\(b = \frac{m}{n} \), number of bits we use in structure per distinct key in data

Probability \(\epsilon \) of false positive for \(x \):

Probability of \(h(x) \) hitting an occupied cell:

\[
\epsilon = \Pr_{h \sim H} [S[h(x)] = T] \approx \frac{n}{m} = \frac{1}{b}
\]

Example:
\[
\epsilon = 0.02 \implies b = 50
\]

Too high for many applications!! (IP address is 32 bits...)
Can we get a better tradeoff between \(\epsilon \) and \(b \)?
Set membership: Bloom Filters [Bloom 1970]

Two parameters: \(m \) and \(k \)

Structure: Boolean array of size \(m \)

Independent hash functions \(h_1, h_2, \ldots, h_k \) where \(h_i(x) \sim U[1, \ldots, m] \)

Initialize:

Declare boolean array \(S \) of size \(m \);

For \(i = 1, \ldots, m \): \(S[i] \leftarrow F \)

Process element with key \(x \):

For \(i = 1, \ldots, k \): \(S[h_i(x)] \leftarrow T \)

Membership query for \(x \):

Return \(S[h_1(x)] \) and \(S[h_2(x)] \) and \(\cdots S[h_k(x)] \)

Merge: Two structures of same size and same set of hash functions. Take bitwise OR

\[
T \land T \land F = F \Rightarrow \text{not in set}
\]
Bloom Filters Analysis: Probability of a false positive

\[m: \text{Structure size} \; ; \; k: \text{number of hash functions} \; ; \; n: \text{number of distinct keys inserted} \]

Probability of \(h_i(x) \) NOT hitting a particular cell \(j \):

\[
\Pr_{h \sim H}[h_i(x) \neq j] = (1 - \frac{1}{m})
\]

Probability that cell \(j \) is F is that none of the \(nk \) “dart throws” hits cell \(j \):

\[
\Pr_{h \sim H}[S[j] = F] = \left(1 - \frac{1}{m} \right)^{kn}
\]

A false positive occurs for \(x \) when all \(k \) cells \(h_i(x) \) for \(i = 1, \ldots, k \) are T:

\[
\varepsilon = \prod_{i=1,\ldots,k} \left(1 - \Pr_{h \sim H}[S[h_i(x)] = F] \right) = \left(1 - \left(1 - \frac{1}{m} \right)^{kn} \right)^k
\]

* Assume \(k \ll m \) so \(h_i(x) \) for different \(i = 1, \ldots, k \) are very likely to be distinct
Bloom Filters: Probability of a false positive (contd)

m: Structure size; k: number of hash functions; n number of distinct keys inserted

False positive probability:

$$\varepsilon \leq \left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \approx \left(1 - e^{-\frac{kn}{m}}\right)^k = \left(1 - e^{-\frac{k}{b}}\right)^k$$

$$\left(1 - \frac{1}{m}\right)^{kn} = \left(\left(1 - \frac{1}{m}\right)^{m}\right)^{\frac{kn}{m}} \approx \left(\frac{1}{e}\right)^{\frac{kn}{m}} = e^{-\frac{kn}{m}}$$

We can see that FP probability decreases with m

!! FP probability depends on $b = \frac{m}{n}$, number of bits we use per distinct key

Given b, which k minimizes the FP probability ε?
Bloom Filters: Probability of a **false positive** (contd)

False positive probability \(\varepsilon \) (upper bound):

\[
\varepsilon \leq \left(1 - e^{-\frac{k}{b}}\right)^k
\]

Given \(b \), which \(k \) minimizes the FP probability?

\[
k \approx \ln(2) b \approx 0.7 b
\]

\[
\varepsilon \approx \left(\frac{1}{2}\right)^b \ln 2
\]

!! FP error decreases exponentially in \(b \)

(recall \(\varepsilon = \frac{1}{b} \) for \(k = 1 \))

\(k \): number of hash functions

\(m \): Structure size

\(n \): number of distinct keys inserted

\(b = \frac{m}{n} \): bits per key

Compute \(b \) for desired FP error \(\varepsilon \):

\[
b \approx 1.44 \log_2 \frac{1}{\varepsilon}
\]

Example:

\(b = 8; k = 6; \varepsilon \approx 0.02 \)
Quick review: Random Variables

Random variable X

Probability Density Function (PDF) $f(x)$:

- **Properties:** $f(x) \geq 0$ $\int_{-\infty}^{\infty} f(x) \, dx = 1$

- **Cumulative Distribution Function (CDF)**

 $F(t) = \int_{-\infty}^{t} f(x) \, dx$: probability that $X \leq t$

 - **Properties:** $F \in [0,1]$ monotone non-decreasing
Quick review: Expectation

- **Expectation**: “average” value of X:
 \[
 \mu_X \equiv E[X] = \int_{-\infty}^{\infty} xf(x) \, dx
 \]

- **Linearity of Expectation**:
 \[
 E[aX + b] = aE[X] + b
 \]

For random variables $X_1, X_2, X_3, \ldots, X_k$

\[
E\left[\sum_{i=1}^{k} X_i\right] = \sum_{i=1}^{k} E[X_i]
\]
Quick review: Variance

- **Variance**

 \[\text{Var}[X] \equiv \sigma_X^2 = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx \]

- **Useful relations:**

 \[\sigma_X^2 = E[X^2] - \mu_X^2 \]

 \[\text{Var}[aX + b] = a^2 \text{Var}[X] \]

- **The standard deviation is** \(\sigma_X = \sqrt{\text{Var}[X]} \)

- **Coefficient of Variation** \(\frac{\sigma}{\mu} \) (normalized s.d.)

Edith Cohen
Quick review: Covariance

Measure of joint variability of two random variables) \(X, Y\)

\[
\text{Cov}[X, Y] = \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] \\
= E[XY] - \mu_X\mu_Y
\]

- \(X, Y\) are independent \(\Rightarrow\) \(\sigma_{XY} = 0\)

- Variance of the sum of \(X_1, X_2, \ldots, X_k\)

\[
\text{Var} \left[\sum_{i=1}^{k} X_i \right] = \sum_{i=1}^{k} \sum_{j=1}^{k} \text{Cov}[X_i, X_j] = \sum_{i=1}^{k} \text{Var}[X_i] + \sum_{i\neq j}^{k} \text{Cov}[X_i, X_j]
\]

When (pairwise) independent
Quick Review: Estimators

A function \(\hat{f}(S) \) applied to a probabilistic sketch \(S \) of data \(D \) to estimate a property/statistics \(f(D) \) of the data \(D \)

- **Error** (random variable) \(\text{err}(\hat{f}) = \hat{f}(S) - f(D) \); **Relative Error** \(\frac{\text{err}(\hat{f})}{f(D)} \)
- **Bias** \(\text{Bias}[\hat{f}] = E[\text{err}(\hat{f})] = E[\hat{f}] - f(D) \)
 - When \(\text{Bias} = 0 \) estimator is **unbiased**
- **Mean Square Error (MSE):**
 \[
 E\left[\text{err}(\hat{f})^2\right] = \text{Var}[\hat{f}] + \text{Bias}[\hat{f}]^2
 \]
- **Root Mean Square Error (RMSE):** \(\sqrt{\text{MSE}} \)
- **Normalized Root Mean Square Error (NRMSE):** \(\frac{\sqrt{\text{MSE}}}{f(D)} \)
Simple Counting (revisited)

Initialize: \(s \leftarrow 0 \)
Process element: \(s \leftarrow s + 1 \)
Merge \(s, s' \): \(s \leftarrow s + s' \)

Exact count: Size (bits) is \(\lceil \log_2 n \rceil \) where \(n \) is the current count.

Can we count with fewer bits? Have to settle for an approximate count...

Applications: We have very many quantities to count, and fast memory is scarce (say, inside a backbone router,) or bandwidth is scarce (distributed training of a large ML model)
Morris Counter [Morris 1978]

Probabilistic stream counter: Maintain "log n" instead of n, use $\log \log n$ bits

- **Initialize:** $s = 0$
- **Increment:** Increment s with probability 2^{-s}
- **Query:** Return $2^s - 1$

| Stream: | 1,

Count n:	1, 2, 3, 4, 5, 6, 7, 8
$p = 2^{-x}$:	\(\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8} \)
Counter x:	0, 1, 1, 2, 2, 2, 2, 3, 3
Estimate \hat{n}:	0, 1, 1, 3, 3, 3, 3, 7, 7
Morris Counter: Unbiasedness

- **Initialize**: \(s = 0 \)
- **Increment**: \(s \leftarrow s + 1 \) with probability \(2^{-s} \)
- **Query**: Return \(2^s - 1 \)

- When \(n = 0, s = 0 \), estimate is \(\hat{n} = 2^0 - 1 = 0 \)
- When \(n = 1, s = 1 \), estimate is \(\hat{n} = 2^1 - 1 = 1 \)
- When \(n = 2 \),

 with \(p = \frac{1}{2}, s = 1, \hat{n} = 1 \)

 with \(p = \frac{1}{2}, s = 2, \hat{n} = 2^2 - 1 = 3 \)

Expectation: \(E[\hat{n}] = \frac{1}{2} \times 1 + \frac{1}{2} \times 3 = 2 \)

- \(n = 3, 4, 5 \ldots \) by induction...
Morris Counter: Unbiasedness (contd)

- Initialize: $s = 0$
- Increment: $s \leftarrow s + 1$ with probability 2^{-s}
- Query: Return $2^s - 1$

It suffices to show that the expected increase of the estimate is always 1

- Suppose the counter value is s
- We increase with probability 2^{-s}
- The expected increase in the estimate is
 \[
 2^{-s} \left((2^{s+1} - 1) - (2^s - 1) \right) + (1 - 2^{-s})0 = 2^{-s} 2^s = 1
 \]
Morris Counter: Variance

How good is our estimate?

- Our estimate is the random variable \(\hat{n} = 2^{X_n} - 1 \)

 \[
 \text{Var}[\hat{n}] = \text{Var}[\hat{n} + 1] = E[(\hat{n} + 1)^2] - E[\hat{n} + 1]^2 \\
 = E[2^{2X_n}] - (n + 1)^2
 \]

- We can show by induction \(E[2^{2X_n}] = \frac{3}{2}n^2 + \frac{3}{2}n + 1 \)

- This means \(\text{Var}[\hat{n}] \approx \frac{1}{2}n^2 \) and \(\text{CV} = \frac{\sigma}{\mu} \approx \frac{1}{\sqrt{2}} \) (=NRMSE since unbiased)

How to reduce the error?
Reducing variance by averaging

k (pairwise) independent unbiased estimates Z_i with expectation μ and variance σ^2.

The average estimator $\hat{n}' = \frac{\sum_{i=1}^{k} Z_i}{k}$

- **Expectation:** $E[\hat{n}'] = \frac{1}{k} \sum_{i=1}^{k} E[Z_i] = \frac{1}{k} k \mu = \mu$

- **Variance:** $\left(\frac{1}{k}\right)^2 \sum_{i=1}^{k} \text{Var}[Z_i] = \left(\frac{1}{k}\right)^2 k \sigma^2 = \frac{\sigma^2}{k} (\times k \text{ decrease})$

- **CV:** $\frac{\sigma}{\mu} (\times \sqrt{k} \text{ decrease})$
Morris Counter: Reducing variance (generic method)

- Use \(k \) independent counters \(y_1, y_2, \ldots, y_k \)
- Compute estimates \(Z_i = 2^{y_i} - 1 \)
- Average the estimates \(\hat{n}' = \frac{\sum_{i=1}^{k} Z_i}{k} \)
- NRMSE=CV = \(\frac{\sigma}{\mu} \approx \frac{1}{\sqrt{2k}} = \varepsilon \)

Sketch size (bits): \(k \log \log n = \frac{1}{2} \varepsilon^{-2} \log \log n \)

Can we get a better tradeoff of sketch size and NRMSE \(\varepsilon \) ?
Morris Counter: Reducing variance (dedicated method)

base change [Morris 1978+Flajolet 1985]

Morris counter: \(\text{Var}[\hat{n}] = \sigma^2 \approx \frac{1}{2} n^2 \) and \(\text{CV} = \frac{\sigma}{\mu} \approx \frac{1}{\sqrt{2}} \)

Single counter with base change –

IDEA: Change base 2 (count \(\log_2 n \)) to 1 + \(b \) (count \(\log_{1+b} n \))

- **Estimate**: Return \((1 + b)^s - 1\)
- **Increment**:
 - Increase counter \(s \) by maximum amount so estimate increase = \(1 - \Delta \leq 1 \).
 - Increment \(s \) with probability \(\Delta b^{-1}(1 + b)^{-s} \)

For \(b \) closer to 0, we increase accuracy but also increase counter size.

We analyze a more general method
Weighted Morris Counter [C’15]

5, 14, 1, 7, 18, 9, 121, 17,
weighted values, composable, size/quality tuned by base parameter b

- **Initialize:** $s \leftarrow 0$
- **Estimate:** return $(1 + b)^s - 1$

- **Add** V or **merge** with a Morris sketch $s_2 \leq s$ ($V = (1 + b)^{s_2} - 1$):
 - Increase s by max amount so that estimate increase by $Z \leq V$
 - $\Delta \leftarrow V - Z$; Increment s with probability $\frac{\Delta}{b(1+b)^s}$

We can show $\text{Var}[\hat{n}] \leq bn(n + 1) \implies \text{CV} \leq \sqrt{b} \sqrt{1 + \frac{1}{n}} \implies$ Choose $b = \varepsilon^2$

Sketch size: $\log_2 \log_{1+b} n \approx \log_2 \left(\frac{\log_2 n}{b \log_2 e} \right) \leq \log_2 \log_2 n + 2 \log_2 \frac{1}{\varepsilon}$

!! Much better than the averaging structure $\frac{1}{2} \varepsilon^{-2} \log \log n$

$n = 10^9$, $\varepsilon = 0.1$
Exact: $\log_2 10^9 \approx 30$ bits
Ave Morris: ≈ 250 bits
W-Morris: ≈ 12 bits

Edith Cohen
Weighted Morris Counter: Unbiasedness

- **Initialize:** $s \leftarrow 0$
- **Estimate:** return $(1 + b)^s - 1$

- **Add V or merge** with a Morris sketch $s_2 \leq s$ ($V = (1 + b)^{s_2} - 1$):
 - Increase s by max amount so that estimate increase by $Z \leq V$
 - $\Delta \leftarrow V - Z$; Increment s with probability $\frac{\Delta}{b(1+b)^s}$

We show that the expected increase in the estimate when adding V is equal to V. The increase has two components, deterministic, and probabilistic:

- **Deterministic:** We set $s \leftarrow s + \max\{i \geq 0 \mid (1 + b)^{s+i} - (1 + b)^s \leq V\}$. This step increased the estimate by $Z = (1 + b)^{s+i} - (1 + b)^s$
- We then probabilistically increment s to account for $\Delta = V - Z$: The estimate increase is $(1 + b)^{s+1} - (1 + b)^s = b(1 + b)^s$ with probability $p = \frac{\Delta}{b(1+b)^s}$ and is 0 otherwise.

Therefore, the expectation is $pb(1 + b)^s = \Delta$.

Edith Cohen
Weighted Morris Counter: Variance bound

Estimate: \((1 + b)^s - 1\)

Add \(\Delta\): Increment \(s\) with probability \(\frac{\Delta}{b(1+b)^s}\)

Consider all data values \(V_i\) and the corresponding random variables \(A_i\) that is the increase in the estimate. Note that by definition \(n = \sum_i V_i\).

Lemma1: Consider value \(V\) and variable \(A\). Then \(\text{Var}[A] \leq \Delta b(n + 1)\)

Lemma2: For any \(i \neq j\). \(\text{Cov}[A_i, A_j] = 0\).

Combining, we have that \(\text{Var}[\hat{n}] = \sum_i \text{Var}[A_i] \leq \sum_i V_i b(n + 1) \leq bn(n + 1)\)

It remains to prove the Lemmas...
Weighted Morris Counter: Variance bound, Lemma1

Estimate: \((1 + b)^s - 1\)

Add \(\Delta\): Increment \(s\) with probability \(\frac{\Delta}{b(1+b)^s}\)

Consider all data values \(V_i\) and the corresponding random variables \(A_i\) that is the increase in the estimate. Note that by definition \(n = \sum V_i\).

Lemma1: Consider value \(V\) and variable \(A\). Then \(\text{Var}[A] \leq Vb(n + 1)\)

Proof: The variance, conditioned on the state of the counter \(s\), only depends on the “probabilistic” part which is \(\Delta \leq V\).

\[
\text{Var}[A | s] = \left(\frac{1}{p} - 1\right) \Delta'^2 \leq \frac{b(1+b)^s}{\Delta} \Delta^2 = \Delta b \ (1+b)^s
\]

The value of \(s\) at the time the element is processed is at most the final value \(s' \geq s\) of the counter. So \(\text{Var}[A | s] \leq \Delta b \ (1+b)^{s'}\)

The unconditioned variance is bounded by the expectation over the distribution of \(s'\).

Note that \(E[(1 + b)^{s'}] = n + 1\). Therefore

\[
\text{Var}[A] = E_s[\text{Var}[A | s]] \leq \Delta b \ E_{s'}[(1 + b)^{s'}] = \Delta b \ (n + 1) \leq Vb(n + 1)
\]
Weighted Morris Counter: Variance bound, Lemma2

Estimate: \((1 + b)^s - 1 \)

Add \(\Delta \): Increment \(s \) with probability \(\frac{\Delta}{b(1+b)^s} \)

Consider all data values \(V_i \) and the corresponding random variables \(A_i \) that is the increase in the estimate. Note that by definition \(n = \sum_i V_i \).

Lemma2: For any \(i \neq j \). \(\text{Cov}[A_i, A_j] = 0 \).

Proof:
Suppose \(V_1 \) is processed first. We have \(E[A_1] = V_1 \). We now consider \(A_2 \) Conditioned on \(A_1 \). Recall that the expectation of \(A_2 \) conditioned on any value of the counter when \(V_2 \) is processed is \(E[A_2 \mid s] = V_2 = E[A_2] \). Therefore, for any \(a \),

\[
E[A_2 \mid A_1 = a] = V_2.
\]

\[
E[A_1A_2] = \sum_a a \Pr[A_1 = a] E[A_2 \mid A_1 = a] = V_2 E[A_1] = E[A_2] E[A_1] = V_1 V_2
\]

Edith Cohen
Same keys can occur in multiple data elements, we want to count the number of distinct keys.

- Number of distinct keys is \(n \) (= 6 in example)
- Number of data elements in this example is 11
Counting Distinct Keys: Example Applications

- Networking:
 - Packet or request streams: Count the number of distinct source IP addresses
 - Packet streams: Count the number of distinct IP flows (source+destination IP, port, protocol)

- Search Engines: Find how many distinct search queries were issued to a search engine each day
Bibliography

Misra Gries Summaries
- Merging: Agarwal, Cormode, Huang, Phillips, Wei, and Yi, Mergeable Summaries, PODS 2012

Bloom filters:
- Bloom, Burton H. (1970), *"Space/Time Trade-offs in Hash Coding with Allowable Errors"*, *Communications of the ACM*, 13 (7)

Approximate counting (Morris Algorithm)
- Philippe Flajolet Approximate counting: A detailed analysis. BIT 25 1985
 http://algo.inria.fr/flajolet/Publications/Flajolet85c.pdf
- Merging Morris counters: these slides

Edith Cohen