
Data Mining - HW4

Nathan Geier
nathangeier@mail.tau.ac.il

1.

(a)

Algorithm 1 k-mins sketch

1: for 1 ≤ i ≤ k do
2: Iterate over nodes u by increasing hi(u):
3: Visit nodes v reachable from u (starting at u):
4: if sv[i] = ∅ then
5: sv[i]← sv[i] ∪ {(hi(u), u)}
6: Continue the search in outNeighbors(v)
7: else
8: truncate search at v
9: end if

10: end for

As learned in class, the complexity is O(mk) since we processed each node at most 1
time in each iteration and there are k iterations. (this is very similar to the algorithm we
learned in class for min-hash with k = 1, just that now we do it for every hash function)

(b) This is a standard estimation using sketch problem, not related to graphs or how the
data was generated (though we could try to use this information). As learned in lecture
2, we can merge the sketches of Reach−1(v)∪Reach−1(u) by taking the entry-wise min
(per hash function) su,v[i] ← min{sv[i], su[i]}. After we have a k-mins sketch su,v, we
use the MLE cardinality estimator for k-mins MinHash sktech:

k∑k
i=1 su,v[i]

where hi(x) ∼ Exp(1). (As learned in lec. 2, it’s easy to convert hi(x) ∼ U [0, 1] to
hi(x) ∼ Exp(1) so this isn’t a problem)

1

2.

(a) Our estimator shall be

Ĉα,S(v) =
∑
u∈S

Îv u · α(ADS(v)[u])

Where Îv u is an ”inverse probability” unbiased estimator of the ”presence” of u in
ADS(v), and ADS(v)[u] is the distance dvu saved in ADS(v), but if u /∈ ADS(v) we
shall define it to be +∞ so that α(ADS(v)[u]) = 0. For the estimator Îv u we will use
the ”inverse probability”: when u /∈ ADS(v) it will be 0, and otherwise it will be the
inverse (1/) of the probability for h(u) having a ”good” value that would let u in, when
fixing h on all the other vertices. Namely, we look at all other vertices in ADS(v), fix
their hash values, and ask for what values of h(u) we have that u is included, and what
is the probability for getting one of these values (we also need k for this computation).
Since the inclusion probability used is unbiased using the same arguments we learned
in class when talking about ”inverse probability”, this estimator’s expectation is 1. We
have that

E
[
Îv u · α(ADS(v)[u])

]
= E

[
Îv u · α(dvu)

]
= α(dvu)E

[
Îv u

]
= α(dvu)

Where in the first equality we used that if ADS(v)[u] 6= dvu then u /∈ ADS(v) so
Îv u = 0 and the multiplication is therefore 0 in both sides. Now, using the linearity of
expectation, we get that

E

[∑
u∈S

Îv u · α(ADS(v)[u])

]
=
∑
u∈S

E
[
Îv u · α(ADS(v)[u])

]
=
∑
u∈S

α(dvu)

(b)

i. Since we assume {Îv ui}i are (pair-wise) independent, the variance of the sum is
the sum of variances. Since variance is always non-negative:

V ar
[
Ĉα,V

]
− V ar

[
Ĉα,S

]
=
∑

u∈V \S

V ar
[
Îv u · α(ADS(v)[u])

]
≥ 0

Where the ≥ turns to > if there exists u ∈ V \ S that isn’t always in ADS(v), so it
cannot have zero variance. For example, this must happen when |V \ S| > k.

ii. No, since there could be vertices u such that Îv u · α(ADS(v)[u]) has expectation
1, say when α is some T thresh-hold decay function with big enough T , and u is a
vertex with dvu < T , but high variance (almost 1) because the inclusion probability
could be really small making Îv u = 0 most of the time, if there are many (say
100k5) vertices closer to v than u. In that case, the CV of Ĉα,{u} is almost 1.

(c)

i. When there are more vertices in S the variance rises, but so does the expectation.
So what matters when adding a node u to S is the relation between the CV of
Ĉα,S and that of Ĉα,{u}. However, as we have seen, when |S| is small, there is not

much we can guarantee about the CV of Ĉα,S in the general case, and there are bad
examples. When |S| is large enough, there is more stability and lower dominance of
bad examples, so we can guarantee more.

2

ii. When the distances of S from v are small relatively to distances of other nodes from
v, the inclusion probability for nodes from S is higher, and therefore the variance of
our estimator Ĉα,S is lower, reducing its CV .

(d) We use the ADS algorithm learned in class, with the difference that we will only save
vertices from S in our sketch. Namely, instead of iterating over all nodes u by increasing
h(u), we will iterate over all u ∈ S by increasing h(u). The expected number of elements
in ADS(v) is now at most k ln |S|, using the same argument we learned in class. There-
fore, we process each vertex in expectation at most k ln |S| times so the expected total
running time is upper bounded by k(m+n) ln |S|. Since there are only |S| iterations and
each is linear, the running time is also upper bounded by |S| (m+n), may be relevant for
small S. To get the required sketch, let k := ε−2. The CV should be ≈ 1/

√
k = ε, using

the same CV bound we learned in class for Ĉα,V (v), since the inclusion probabilities for
elements from S in our new sketch are exactly as if there are only S ∪ {v} in our graph
using the classic ADS, with the same distances.

(e) Yes, again, the resulting sketch is as if we took ADS from a graph with only S ∪ U
(actually better since we don’t waste space on vertices from U \ S in our new sketch)
and so its like having β ≡ 1 in that graph, the case in which the CV is O(1/

√
k), as

mentioned in class. The algorithm is the same one learned in class: we compute the
”union” (as defined in class) ADS(U) from the sets ADS(v) for v ∈ U , and then we
apply a centrality estimator for ADS(U).

3

3.

(a) Our sketch will maintain the set {(h(ti), ti)}i of all timestamps with hash value in the
bottom-k hash values of timestamps seen before them. (very similar to what we did in
the bottom-k ADS, just that now we switched the roles of distance and hash value: we
go over the timestamps with increasing ”distance” instead of increasing hash value, and
add to the sketch if our hash value is one of the smallest k, instead of distance)
How to update the sketch when a new time stamp arrives: If its hash value is one of the
smallest k hash values of timestamps in our sketch (or if there are less than k timestamps
in our sketch) add it to our sketch. Otherwise, ignore it. (we note that if the hash value
is one of the smallest k in the sketch it must also be one of the smallest k seen so far,
since any hash value smaller than it that was seen before it must have also been added)
The estimator: Just like in ADS, we use the estimator∑

i|ti<t

Îtiα(SK[ti])

Where Îti is the unbiased ”presence” estimator of ti based on inverse-probability, and
SK[ti] is ti if its in the sketch, and t otherwise (doesn’t really matter since the multipli-
cation will be 0 anyway because Îti = 0 if ti isn’t in the sketch)
The expected size of our sketch is k lnn, our estimator is unbiased, and the CV is at
most 1/

√
2k − 2, all from the same arguments learned in class for bottom-k ADS. All

that’s left is to choose k = 1/ε2.

(b) This time, we want our sketch to contain the largest timestamps (closest to t) instead
of the smallest. Our sketch will maintain the k most recent timestamps, along with all
previous timestamps whose hash value is one of the smallest k hash values of timestamps
that came after them.
How to update the sketch when a new time stamp arrives: We always add it to our
sketch. Then, we throw out of the sketch all timestamps with hash value that is no
longer in the bottom-k hash values of later timestamps. This can be done in linear (with
respect to sketch size) time by maintaining a counter for every sketch element of how
many later timestamps have lower hash values, so when we add a new element we visit
each sketch element once, if it has greater hash value we increase its counter, and if the
counter went above k, we throw that element out.

The estimator: We use the estimator∑
i|ti<t

Îtiα(t− SK[ti])

Since the sketch (and the estimator) we end up with are just like when receiving t− ti in
an increasing order and using the sketch from (a), we have that the estimator is unbiased
and that the CV is just like in the previous section, so we pick k = 1/ε2 this time too.
The only thing that might change is the sketch size and update time: We made sure that
the update time stays linear in the sketch size. This time we have removals so bounding
the final sketch size isn’t all that matters (actually it is because we are talking about
stream sketch so the ”final” point could be anytime). From the same argument learned
in class, after processing d elements the expected sketch size is k ln d.

4

4.

(a) f is not monotone: We have that f(∅) = f(V) = 0, so f is monotone iff f(S) = 0 for
every S ⊆ V , since it should hold that f(∅) ≤ f(S) ≤ f(V) for monotone functions.
Since weights are positive (assumption in the question), we have that f(S) > 0 for every
S 6= ∅, V (so that the sum isn’t trivial), therefore f is not monotone.
f is submodular: Let S ⊂ T and i ∈ V \ T , then

fS(i) = f(S ∪ {i})− f(S) =
∑

(u,v)∈E|u∈S∪{i},v∈V \(S∪{i})

wuv −
∑

(u,v)∈E|u∈S,v∈V \S

wuv =

∑
(i,v)∈E|v∈V \(S∪{i})

wuv −
∑

(u,i)∈E|u∈S

wuv ≥
∑

(i,v)∈E|v∈V \(T∪{i})

wuv −
∑

(u,i)∈E|u∈T

wuv = fT (i)

Where we used that:

S ⊂ T ⇒ V \ (S ∪ {i}) ⊃ V \ (T ∪ {i})⇒
∑

(i,v)∈E|v∈V \(S∪{i})

wuv ≥
∑

(i,v)∈E|v∈V \(T∪{i})

wuv

S ⊂ T ⇒
∑

(u,i)∈E|u∈S

wuv ≤
∑

(u,i)∈E|u∈T

wuv ⇒ −
∑

(u,i)∈E|u∈S

wuv ≥ −
∑

(u,i)∈E|u∈T

wuv

(b) For S ⊆ V1, denote by NS(u)[k] the weight of the k’th largest edge adjacent to u in the
subgraph of G induced by S and V2, and let it be zero if there are less than k edges
adjacent to u. It holds that NS(u)[k] ≤ NT (u)[k] for every S ⊂ T ⊂ V1, u ∈ V2, k since
all edges adjacent to u in the graph induced by S, V2 are also adjacent to u in the graph
induced by T, V2, so we pick the k’th largest element from a better set and therefore
the weight of the k’th largest edge can only be improved. If there are no k adjacent
vertices in S, V2 and in T, V2 there are, then the inequality still holds since edge weights
are positive.

f is monotone: Let S ⊂ T ⊂ V1, then by using NS(u)[k] ≤ NT (u)[k], we have that

f(S) =
∑
u∈V2

NS(u)[1] +NS(u)[2] ≤
∑
u∈V2

NT (u)[1] +NT (u)[2] = f(T)

f is submodular: Let S ⊂ T ⊂ V1 and i ∈ V \ T , then(
NS∪{i}(u)[1] +NS∪{i}(u)[2]

)
− (NS(u)[1] +NS(u)[2]) ={

0 w(u, i) ≤ NS(u)[2]

w(u, i)−NS(u)[2] otherwise
= max(0, w(u, i)−NS(u)[2])

Because if w(u, i) ≤ NS(u)[2] nothing is changed,

but otherwise the previous 2nd edge is kicked out and (u, i) joins.

fS(i) =
∑
u∈V2

max(0, w(u, i)−NS(u)[2]) ≥
∑
u∈V2

max(0, w(u, i)−NT (u)[2]) = fT (i)

Where we used that

NS(u)[2] ≤ NT (u)[2]⇒ w(u, i)−NS(u)[2] ≥ w(u, i)−NT (u)[2]⇒
max(0, w(u, i)−NS(u)[2]) ≥ max(0, w(u, i)−NT (u)[2])

(the function max(0, x) is non-decreasing)

5

5.

(a) It still holds that f(Gi∪Optk) ≥ f(Optk) and that f(Gi∪Optk) ≤ f(Gi)+kmaxu fGi(u)
so we still have that f(Optk)− f(Gi+1) ≤ (f(Optk)− f(Gi))

(
1− 1

k

)
, all from the exact

same arguments learned in class. The only change is that now we have

f(Optk)− f(Gck) ≤
(

1− 1

k

)ck
(f(Optk)− f(∅))

f(Gck) ≥ f(Optk)

(
1−

(
1− 1

k

)ck)
> f(Optk)

(
1− 1

ec

)

(b) Same as before, with the change that now

f(Gi+1) ≥ f(Gi) + (1− ε) max
u

fGi(u) ≥ f(Gi) + (1− ε) f(Optk)− f(Gi)

k

So now

f(Optk)− f(Gi+1) ≤ (f(Optk)− f(Gi))

(
1− 1− ε

k

)
Giving that

f(Optk)− f(Gck) ≤
(

1− 1− ε
k

)ck
(f(Optk)− f(∅))

f(Gck) ≥ f(Optk)

(
1−

(
1− 1− ε

k

)ck)
≈> f(Optk)

(
1− 1

ec(1−ε)

)

6

