
Leveraging Big Data: Lecture 11

Instructors:

http://www.cohenwang.com/edith/bigdataclass2013

Edith Cohen

Amos Fiat

Haim Kaplan

Tova Milo

Today’s topics

 Graph datasets

 Mining graphs: which properties we look at
and why

 Challenges with massive graphs

 Some techniques/algorithms for very large
graphs:

 Min-Hash sketches of reachability sets

 All-Distances sketches

Graph Datasets:
Represent relations between “things”

Bowtie structure of the Web Broder et. al. 2001

Dolphin interactions

Graph Datasets

 Hyperlinks (the Web)

 Social graphs (Facebook, Twitter, LinkedIn,…)

 Email logs, phone call logs , messages

 Commerce transactions (Amazon purchases)

 Road networks

 Communication networks

 Protein interactions

 …

Properties

 Directed/Undirected

 Snapshot or with time dimension (dynamic)

 One or more types of entities (people,
pages, products)

 Meta data associated with nodes

 Some graphs are really large: billions of
edges for Facebook and Twitter graphs

Mining the link structure:
 Node/Network-level properties

 Connected/Strongly connected components

 Diameter (longest shortest s-t path)

 Effective diameter (90% percentile of pairwise
distance)

 Distance distribution (number of pairs within
each distance)

 Degree distribution

 Clustering coefficient: Ratio of the number of
closed triangles to open triangles.

Diameter

Diameter is 3

Distance distribution of

Distance 1: 5
Distance 2: 5
Distance 3: 1

Triangles

Open triangle

Triangles

closed triangle

Triangles

 Social graphs have many more
closed triangle than random graphs

 “Communities” have more closed
triangles

…Mining the link structure

• Centrality (who are the most important
nodes?)

• Similarity of nodes (link prediction, targeted
ads, friend/product recommendations, Meta-
Data completion)

• Communities: set of nodes that are more
tightly related to each other than to others

• “cover:” set of nodes with good coverage
(facility location, influence maximization)

Communities Example (overlapping)

Star Wars

Communities Example (overlapping)

Ninjago

Communities Example (overlapping)

Bad Guys

Communities Example (overlapping)

Good Guys

Also a good “cover”

Centrality

Central Guys

Centrality
Which are the most important nodes ?

… answer depends on what we want to capture:
 Degree (in/out): largest number of followers,

friends. Easy to compute locally. Spammable.
 Eigenvalue (PageRank): Your importance/

reputation recursively depend on that of your
friends

 Betweenness: Your value as a “hub” -- being
on a shortest path between many pairs.

 Closeness: Centrally located, able to quickly
reach/infect many nodes.

Centrality

Central with respect
to all measures

Computing on Very Large Graphs
 Many applications, platforms, algorithms

 Clusters (Map Reduce, Hadoop) when applicable

 iGraph/Pregel better with edge traversals

 (Semi-)streaming : pass(es), keep small info (per-node)

 General algorithm design principles :

 settle for approximations

 keep total computation/ communication/
storage “linear” in the size of the data

 Parallelize (minimize chains of dependencies)

 Localize dependencies

Next: Node sketches
(this lecture and the next one)

 Min-Hash sketches of reachability sets

 All-distances sketches (ADS)

 Connectivity sketches (Guha/McGregor)

Sketching:

 Compute a sketch for each node, efficiently

 From sketch(es) can estimate properties that
are “harder” to compute exactly

Review (lecture 2): Min Hash Sketches

 “Items” 𝑽

 Random hash function 𝒉: 𝑽 → [𝟎, 𝟏]

 For a subset 𝑵 ⊂ 𝑽 we get a sketch 𝒔(𝑵)

 From 𝒔(𝑵) we can:

 Estimate cardinality |𝑵|,

 Obtain a random sample of 𝑵,

 Estimate similarity, union, sketch merged sets

 Basic sketch (𝒌 = 𝟏) : maintain the minimum 𝒉(𝑵)

Review: Min-Hash Sketches

k-mins sketch: Use 𝑘 “independent” hash functions: ℎ1, ℎ2, … , ℎ𝑘

Track the respective minimum 𝑦1, 𝑦2, … , 𝑦𝑘 for each function.

Bottom-k sketch: Use a single hash function: ℎ
Track the 𝑘 smallest values 𝑦1, 𝑦2, … , 𝑦𝑘

k-partition sketch: Use a single hash function: ℎ′
Use the first log2 𝑘 bits of ℎ′(𝑥) to map 𝑥 uniformly to one of 𝑘
parts. Call the remaining bits ℎ(x).
For 𝑖 = 1,… , 𝑘 : Track the minimum hash value 𝑦𝑖 of the elements
in part 𝑖.

 𝑘 values 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒌 from the range of the hash function
(distribution).

All sketches are the same for 𝑘 = 1

Sketching Reachability Sets

Reachability Set of

Size 4

Reachability Set of

Size 13

Why sketch reachability sets ?

From reachability sketch(es) we can:

 Estimate cardinality of reachability set

 Get a sample of the reachable nodes

 Estimate relations between reachability sets
(e.g., Jaccard similarity)

Exact computation is costly: 𝑂(𝑚𝑛) with 𝑛
nodes and 𝑚 edges, representation size is
massive: does not scale to large networks!

Min-Hash sketches of all
Reachability sets

hash values 𝐡(𝒗) ∼ 𝑼[𝟎, 𝟏]

0.37

0.23
0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

Min-Hash sketches of all
Reachability Sets: 𝑘 = 1

For each 𝑣: 𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗 ↝ 𝒖

 𝒉(𝒖)

Depending on application, may also want
to include node ID in sketch:

𝐚𝐫𝐠𝐦𝐢𝐧
𝒗 ↝ 𝒖

 𝒉(𝒖)

Min-Hash sketches of all
Reachability Sets: 𝑘 = 1

𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗 ↝ 𝒖

 𝒉(𝒖)

0.37

0.23
0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

{0.23}

{0.06} {0.06}

{0.06}
{0.06}

{0.12}

{0.12}

{0.12}

{0.12}

{0.12} {0.23}

{0.23}

{0.23}

Min-Hash sketches of all Reachability
Sets: bottom-2 (𝑘 = 2)

For each 𝑣: 𝐬 𝒗 ← 𝐛𝐨𝐭𝐭𝐨𝐦−𝟐
𝒗 ↝ 𝒖

 𝒉(𝒖)

Min-Hash sketches of all
Reachability Sets: bottom-2

0.37

0.23
0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

{0.06,0.12}

{0.12,0.23}
{0.23,0.37}

Next: Computing Min-Hash sketches of
all reachability sets efficiently

Sketch size for a node: 𝑂(𝑘)

Total computation ≈ 𝑂(𝑘𝑚)

Algorithms/methods:

 Graphs searches (say BFS)

 Dynamic programming/ Distributed

Computing Min-Hash Sketches of all
Reachability Sets: 𝑘 = 1 BFS method

 𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗 ↝ 𝒖

 𝒉(𝒖)

Iterate over nodes 𝑢 by increasing ℎ(𝑢):

Visit nodes 𝑣 through a reverse search from 𝑢:

 IF s 𝑣 = ∅,

 𝑠 𝑣 ← ℎ(𝑢)

 Continue search on inNeighbors(𝑣)

 ELSE, truncate search at 𝑣

𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗 ↝ 𝒖

 𝒉(𝒖)

0.37

0.23
0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

{0.23}

{0.06} {0.06}

{0.06}
{0.06}

{0.12}

{0.12}

{0.12}

{0.12}

{0.12} {0.23}

{0.23}

{0.23}

Compute Min-Hash sketches of all
Reachability Sets: 𝑘 = 1, BFS

Computing Min-Hash sketches of all
reachability sets: 𝑘 = 1 BFS method

Analysis:

Each arc is used exactly once 𝑂(𝑚)

Parallelizing BFS-based Min-Hash
computation

Each graph search depends on all previous
ones: seems like we need to perform 𝑛
searches sequentially.

How can we reduce dependencies ?

Parallelizing BFS-based Min-Hash
computation

Idea (𝑘 = 1):

 Create a super-node of the 𝑛/2 lowest hash
nodes.

 Perform a (reverse) search from super-node and
mark all nodes that are accessed.

 Concurrently perform searches:

 From the lowest-hash 𝑛/2 nodes (sequentially)

 From the highest-hash 𝑛/2 (sequentially).
Prune searches also at marked nodes

Parallelizing BFS-based Min-Hash
computation

Correctness:

 For the lower 𝒏/𝟐 hash values: computation is
the same.

 For the higher 𝒏/𝟐:

We do not know the minimum reachable hash
from higher-hash nodes, but we do know it is
one of the lower 𝑛/2 hash values. This is all we
need to know for correct pruning.

Parallelizing BFS-based Min-Hash
computation

We recursively apply this to each of the
lower/higher sets:

This only gives us 𝒏/𝟐 instead of 𝒏
sequential searches.

How can we obtain more parallelism ?

Parallelizing BFS-based Min-Hash
computation

Super-nodes created in recursion

Nodes ordered by ℎ(𝑢)

The depth of dependencies is at most log2𝑛

 The total number of edge traversals can
increase by a factor of log2𝑛

Computing Min-Hash Sketches of all
Reachability Sets: bottom-𝑘, BFS method

𝐬 𝒗 ← 𝐛𝐨𝐭𝐭𝐨𝐦−𝒌
𝒗 ↝ 𝒖

 𝒉(𝒖)

Next: Computing sketches using the BFS method
for k>1

Computing Min-Hash Sketches of all
Reachability Sets: bottom-𝑘, BFS method

𝐬 𝒗 ← 𝐛𝐨𝐭𝐭𝐨𝐦−𝒌
𝒗 ↝ 𝒖

 𝒉(𝒖)

Iterate over nodes 𝑢 by increasing ℎ(𝑢):

Visit nodes 𝑣 through a reverse search from 𝑢:

 IF s 𝑣 < 𝑘,

 𝑠 𝑣 ← 𝑠 𝑣 ∪ {ℎ 𝑢 }

 Continue search on inNeighbors(𝑣)

 ELSE, truncate search at 𝑣

0.37

0.23
0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

{0.06, }

{0.12, }
{0.23, }

0.12

0.23
0.37

Min-Hash sketches of all
Reachability Sets: bottom-2

Computing Min-Hash Sketches of all Reachability
Sets: 𝑘 = 1 Distributed (DP)

Next: back to 𝑘 = 1.
We present another method to compute the
sketches. The algorithm has fewer dependencies.
It is specified for each node. It is suitable for
computation that is:

 Distributed, Asynchronous
 Dynamic Programming (DP)
 Multiple passes on the set of arcs

Computing Min-Hash Sketches of all Reachability
Sets: 𝑘 = 1 Distributed (DP)

 𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗 ↝ 𝒖

 𝒉(𝒖)

Initialize 𝐬 𝒗 ← 𝒉(𝒗)

 IF s 𝑣 is initialized/updated, send 𝑠(𝑣)
to inNeighbors(𝑣)

 IF value 𝑥 is received from neighbor:

 𝑠 𝑣 ← min{𝑠 𝑣 , 𝑥}

DP computation of Min-Hash sketches 𝑘 = 1

Initialize: 𝐬 𝒗 ← 𝒉(𝒗)

0.37

0.23
0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

{0.45}

{0.95} {0.32}

{0.69}
{0.06}

{0.28}

{0.93}

{0.77}

{0.34}

{0.12} {0.37}

{0.85}

{0.23}

DP computation of Min-Hash sketches 𝑘 = 1

Send to inNeighbors

0.37

0.23
0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

{0.45}

{0.95} {0.32}

{0.69}
{0.06}

{0.28}

{0.93}

{0.77}

{0.34}

{0.12} {0.37}

{0.85}

{0.23}

DP computation of Min-Hash sketches 𝑘 = 1

Update

0.37

0.23
0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

{0.45}

{0.32} {0.32}

{0.06}
{0.06}

{0.12}

{0.28}

{0.12}

{0.12}

{0.12} {0.37}

{0.23}

{0.23}

DP computation of Min-Hash sketches 𝑘 = 1

If updated, send
to inNeighbors

0.37

0.23
0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

{0.45}

{0.32} {0.32}

{0.06}
{0.06}

{0.12}

{0.28}

{0.12}

{0.12}

{0.12} {0.37}

{0.23}

{0.23}

DP computation of Min-Hash sketches 𝑘 = 1

Update

0.37

0.23
0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

{0.45}

{0.32} {0.32}

{0.06}
{0.06}

{0.12}

{0.28}

{0.12}

{0.12}

{0.12} {0.37}

{0.23}

{0.23}

DP computation of Min-Hash sketches 𝑘 = 1

If updated, send to
inNeighbors. Done.

0.37

0.23
0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

{0.23}

{0.06} {0.06}

{0.06}
{0.06}

{0.12}

{0.12}

{0.12}

{0.12}

{0.12} {0.23}

{0.23}

{0.23}

Analysis of DP: Edge traversals
Lemma: Each arc is used in expectation < ln 𝒏 times.

Proof: We bound the expected number of
updates of 𝒔(𝒗). (similar to lecture2)

 Consider nodes 𝑣 = 𝑢1, 𝑢2, … in order that
ℎ(𝑢𝑖) is propagated to (can reach) 𝑣.

 The probability that h(𝑢𝑖) updates s(𝑣) :
𝐏𝐫 [𝒉 𝒖𝒊 < 𝐦𝐢𝐧𝒉 𝒖𝒋

𝒋<𝒊

] = 𝟏

𝒊

 Summing over nodes (linearity of expectation):
 𝟏

𝒊
= 𝑯𝒏 < ln 𝒏

𝒏
𝒊=𝟏

Analysis of DP: dependencies

The longest chain of dependencies is at most
the longest shortest path (the diameter of the
graph)

Next: All-Distances Sketches (ADS)

Often we care about distance, not only
reachability:

 Nodes that are closer to you, in distance or in
Dijkstra (Nearest-Neighbor) rank, are more
meaningful.

 We want a sketch that supports distance-
based queries.

Applications of ADSs

Estimate node/subset/network level properties
that are expensive to compute exactly:

Applications of ADSs

 Distance distribution, effective diameter

 Closeness centrality

 Similarity (e.g., Jaccard similarity of 𝑑-hop
neighborhoods or 𝑥 nearest neighbors, closeness)

 Distance oracles

 Tightness of 𝐹 ⊂ 𝑉 as a community

 Coverage of 𝐹 ⊂ 𝑉

Bibliography

Recommended further reading on social networks
analysis:
 Book: “Networks, Crowds, and Markets:
 Reasoning About a Highly Connected World” By
David Easley and Jon Kleinberg.

http://www.cs.cornell.edu/home/kleinber/network
s-book/
 Course/Lectures by Lada Adamic:

https://www.coursera.org/course/sna
 http://open.umich.edu/education/si/si508/fall20

08

http://www.cs.cornell.edu/home/kleinber/networks-book/
http://www.cs.cornell.edu/home/kleinber/networks-book/
http://www.cs.cornell.edu/home/kleinber/networks-book/
http://www.cs.cornell.edu/home/kleinber/networks-book/
http://www.cs.cornell.edu/home/kleinber/networks-book/
https://www.coursera.org/course/sna
https://www.coursera.org/course/sna
http://open.umich.edu/education/si/si508/fall2008
http://open.umich.edu/education/si/si508/fall2008
http://open.umich.edu/education/si/si508/fall2008
http://open.umich.edu/education/si/si508/fall2008
http://open.umich.edu/education/si/si508/fall2008
http://open.umich.edu/education/si/si508/fall2008

Bibliography

Reachability Min-Hash sketches, All-Distances sketches
(lectures 11,12):

 E. Cohen “Size-Estimation Framework with Applications
to Transitive Closure and Reachability” JCSS 1997

 E. Cohen H. Kaplan “Spatially-decaying aggregation
over a network” JCSS 2007

 E. Cohen H. Kaplan “Summarizing data using bottom-k
sketches” PODC 2007

 E. Cohen: “All-Distances Sketches, Revisited: HIP
Estimators for Massive Graphs Analysis” arXiv 2013

