Leveraging Big Data: Lecture 11

http://www.cohenwang.com/edith/bigdataclass2013

Instructors:

Edith Cohen
Amos Fiat

Haim Kaplan

Tova Milo

Today’s topics

Graph datasets

Mining graphs: which properties we look at
and why

Challenges with massive graphs

Some techniques/algorithms for very large
graphs:

=" Min-Hash sketches of reachability sets
= All-Distances sketches

Graph Datasets:
Represent relations between “things”

facebook

Bowtie structure of the Web Broder et. al. 2001

Dolphin interactions

Graph Datasets

Hyperlinks (the Web)

Social graphs (Facebook, Twitter, LinkedIn,...)
Email logs, phone call logs , messages
Commerce transactions (Amazon purchases)
Road networks

Communication networks

Protein interactions

Properties

® Directed/Undirected
" Snapshot or with time dimension (dynamic)

" One or more types of entities (people,
pages, products)

= \Veta data associated with nodes

" Some graphs are really large: billions of
edges for Facebook and Twitter graphs

Mining the link structure:

Node/Network-level properties

Connected/Strongly connected components
Diameter (longest shortest s-t path)

Effective diameter (90% percentile of pairwise
distance)

Distance distribution (number of pairs within
each distance)

Degree distribution

Clustering coefficient: Ratio of the number of
closed triangles to open triangles.

Diameter

Distance distribution of #

W 3

) 3

Distance 1: 5
5 Distance 2: 5

2
% Distance 3: 1

Triangles

Triangles

Triangles

= Social graphs have many more
closed triangle than random graphs

" “Communities” have more closed
triangles

i e & 4

...Mining the link structure

Centrality (who are the most important
nodes?)

Similarity of nodes (link prediction, targeted
ads, friend/product recommendations, Meta-
Data completion)

Communities: set of nodes that are more
tightly related to each other than to others

“cover:” set of nodes with good coverage
(facility location, influence maximization)

Communities Example (overlapping)

Communities Example (overlapping)

Communities Example (overlapping)

W g ‘
i ¥

P~

W I Bad Guys

B
B8
‘g‘

4]

Communities Example (overlapping)

Als
0 a good “
cover”

Centrality

Centrality

Which are the most important nodes ?

... answer depends on what we want to capture:
= Degree (in/out): largest number of followers,
friends. Easy to compute locally. Spammable.

= Eigenvalue (PageRank): Your importance/
reputation recursively depend on that of your

friends

= Betweenness: Your value as a “hub” -- being
on a shortest path between many pairs.

" Closeness: Centrally located, able to quickly
reach/infect many nodes.

Centrality

Central with respect
to all measures

Computing on Very Large Graphs

Many applications, platforms, algorithms

Clusters (Map Reduce, Hadoop) when applicable
iGraph/Pregel better with edge traversals
(Semi-)streaming : pass(es), keep small info (per-node)

= General algorithm design principles :
= settle for approximations

" keep total computation/ communication/
storage “linear” in the size of the data

= Parallelize (minimize chains of dependencies)
" Localize dependencies

Next: Node sketches
(this lecture and the next one)

" Min-Hash sketches of reachability sets
= All-distances sketches (ADS)
= Connectivity sketches (Guha/McGregor)

Sketching:
= Compute a sketch for each node, efficiently

" From sketch(es) can estimate properties that
are “harder” to compute exactly

Review (lecture 2): Min Hash Sketches

“Items” V

Random hash function h: V — |0, 1]

For a subset N C V we get a sketch s(N)

From s(N) we can:

" Estimate cardinality |N|,

" Obtain a random sample of N,

= Estimate similarity, union, sketch merged sets
Basic sketch (k = 1) : maintain the minimum h(N)

Review: Min-Hash Sketches

k values y4, v, ..., Y| from the range of the hash function
(distribution).

k-mins sketch: Use k “independent” hash functions: hy, h, ..., hy

Track the respective minimum vy, v, ..., v, for each function.

Bottom-k sketch: Use a single hash function: h
Track the k smallest values y4,y,, ..., Vi

k-partition sketch: Use a single hash function: h’

Use the first log, k bits of h'(x) to map x uniformly to one of k
parts. Call the remaining bits h(x).

Fori =1, ...,k : Track the minimum hash value y; of the elements
in part 1.

m=) All sketches are the same fork = 1

Sketching Reachability Sets

kY
A,

Reachability Set of

Reachability Set of §

Why sketch reachability sets ?

From reachability sketch(es) we can:
= Estimate cardinality of reachability set
= Get a sample of the reachable nodes

= Estimate relations between reachability sets
(e.g., Jaccard similarity)

» Exact computation is costly: O(mn) withn
nodes and m edges, representation size is
massive: does not scale to large networks!

Min-Hash sketches of all
Reachability sets

Min-Hash sketches of all
Reachability Sets: k = 1

For each v: s(v) < min h(u)
VYU

Depending on application, may also want
to include node ID in sketch:

argmin h(u)
[ZA N 7 A

Min-Hash sketches of all
Reachablllty Sets: k=1

%0.06} '£{0.06} s(v) < min h(u)
0605 0.32 vt

Min-Hash sketches of all Reachability
Sets: bottom-2 (k = 2)

For each v: s(v) < bottom-2 h(u)

VMU

Min-Hash sketches of all
Reachability Sets: bottom-2

0.37* _3.;“1 0.45 0.12

zﬁ\o.zs
{0.12,0.23}

{0 23,0. 37}

0.93

\\

069

Next: Computing Min-Hash sketches of
all reachability sets efficiently

Sketch size for a node: O (k)
Total computation = O (km)

Algorithms/methods:
" Graphs searches (say BFS)
* Dynamic programming/ Distributed

Computing Min-Hash Sketches of all
Reachability Sets: k = 1 BFS method

s(v) « 11711,\}2 h(u)

Iterate over nodes u by increasing h(u):
Visit nodes v through a reverse search from u:
= IFs(v) = 0,
» s(v) « h(u)
= Continue search on inNeighbors(v)
= FLSE, truncate search at v

Compute Min-Hash sketches of all
Reachability Sets: k = 1

iL;
v

Computing Min-Hash sketches of all
reachability sets: k = 1 BFS method

Analysis:

Each arc is used exactly once O (m)

Parallelizing BFS-based Min-Hash
computation

Each graph search depends on all previous
ones: seems like we need to perform n
searches sequentially.

How can we reduce dependencies ?

Parallelizing BFS-based Min-Hash
computation

ldea (k = 1):
" Create a super-node of the n/2 lowest hash
nhodes.

" Perform a (reverse) search from super-node and
mark all nodes that are accessed.

= Concurrently perform searches:

-rom the lowest-hash n/2 nodes (sequentially)
-rom the highest-hash n/2 (sequentially).

Prune searches also at marked nodes

Parallelizing BFS-based Min-Hash
computation

Correctness:

" For the lower n/2 hash values: computation is
the same.

" For the higher n/2:

We do not know the minimum reachable hash
from higher-hash nodes, but we do know it is

one of the lower n/2 hash values. This is all we
need to know for correct pruning.

Parallelizing BFS-based Min-Hash
computation

» This only gives us n/2 instead of n
sequential searches.

How can we obtain more parallelism ?

» We recursively apply this to each of the
lower/higher sets:

Parallelizing BFS-based Min-Hash
computation

Nodes ordered by h(u)
Super-nodes created in recursion

» The depth of dependencies is at most log,n

» The total number of edge traversals can
increase by a factor of log,n

Computing Min-Hash Sketches of all
Reachability Sets: bottom-k, BFS method

Next: Computing sketches using the BFS method
for k>1

s(v) « bottom-k h(u)
vV~ u

Computing Min-Hash Sketches of all
Reachability Sets: bottom-k, BFS method

s(v) < bottom-k h(u)

V™™ U

Iterate over nodes u by increasing h(u):
Visit nodes v through a reverse search from u:
= IF|[s(v)| <k,
" s(v) «s(v) U {h(u)}
= Continue search on inNeighbors(v)
= FLSE, truncate search at v

Min-Hash sketches of all
Reachablllty Sets: bottom-2

0.1 %\0.28

{0.12, 0.23}
oS 0.93

e

J Q\‘ 4()

0.77

Computing Min-Hash Sketches of all Reachability
Sets: k = 1 Distributed (DP)

Next: back to k = 1.
We present another method to compute the
sketches. The algorithm has fewer dependencies.
It is specified for each node. It is suitable for
computation that is:

= Distributed, Asynchronous
" Dynamic Programming (DP)
" Multiple passes on the set of arcs

Computing Min-Hash Sketches of all Reachability
Sets: k = 1 Distributed (DP)

s(v) « Iljnf\lllll h(u)

Initialize s(v) « h(v)

» |F s(v) isinitialized /updated, send s(v)
to inNeighbors(v)

= |F value x is received from neighbor:
* 5(v) « min{s(v), x}

DP computation of Min-Hash sketches k =1

DP computation of Min-Hash sketches k =1

DP computation of Min-Hash sketches k =1

‘
-

32} '£40.32} Update
).95 0.32

DP computation of Min-Hash sketches k =1

‘
-

32} '£40.32} | If updated, send
).95 0.32 to inNeighbors

DP computation of Min-Hash sketches k =1

‘
-

32} '£40.32} Update
).95 0.32

DP computation of Min-Hash sketches k =1

If updated, send to
inNeighbors. Done.

Analysis of DP: Edge traversals

Lemma: Each arcis used in expectation < In n times.

Proof: We bound the expected number of
updates of s(v). (similar to lecture2)

" Consider nodes v = U4, U,, ... in order that
h(u;) is propagated to (can reach) v.
" The probability that h(u;) updates s(v) :
Pr(h(u;) < minh(u;)] =
j<i
- Summing over nodes (linearity of expectation):
ic1;=H,<Inn

l

Analysis of DP: dependencies

The longest chain of dependencies is at most
the longest shortest path (the diameter of the

graph)

Next: All-Distances Sketches (ADS)

Often we care about distance, not only
reachability:

= Nodes that are closer to you, in distance or in
Dijkstra (Nearest-Neighbor) rank, are more
meaningful.

" We want a sketch that supports distance-
based queries.

Applications of ADSs

Estimate node/subset/network level properties
that are expensive to compute exactly:

Applications of ADSs

Distance distribution, effective diameter
Closeness centrality

Similarity (e.g., Jaccard similarity of d-hop
neighborhoods or x nearest neighbors, closeness)

Distance oracles
Tightness of F € V as a community
Coverageof F C V

Bibliography

Recommended further reading on social networks
analysis:

= Book: “Networks, Crowds, and Markets:
Reasoning About a Highly Connected World” By
David Easley and Jon Kleinberg.

http://www.cs.cornell.edu/home/kleinber/network
s-book/

= Course/Lectures by Lada Adamic:
https://www.coursera.org/course/sna

* http://open.umich.edu/education/si/si508/fall20
08

http://www.cs.cornell.edu/home/kleinber/networks-book/
http://www.cs.cornell.edu/home/kleinber/networks-book/
http://www.cs.cornell.edu/home/kleinber/networks-book/
http://www.cs.cornell.edu/home/kleinber/networks-book/
http://www.cs.cornell.edu/home/kleinber/networks-book/
https://www.coursera.org/course/sna
https://www.coursera.org/course/sna
http://open.umich.edu/education/si/si508/fall2008
http://open.umich.edu/education/si/si508/fall2008
http://open.umich.edu/education/si/si508/fall2008
http://open.umich.edu/education/si/si508/fall2008
http://open.umich.edu/education/si/si508/fall2008
http://open.umich.edu/education/si/si508/fall2008

Bibliography

Reachability Min-Hash sketches, All-Distances sketches
(lectures 11,12):

= E. Cohen “Size-Estimation Framework with Applications
to Transitive Closure and Reachability” JCSS 1997

= E. Cohen H. Kaplan “Spatially-decaying aggregation
over a network” JCSS 2007

= E. Cohen H. Kaplan “Summarizing data using bottom-k
sketches” PODC 2007

= E. Cohen: “All-Distances Sketches, Revisited: HIP
Estimators for Massive Graphs Analysis” arXiv 2013

