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Today’s topics 

 Graph datasets 

 Mining graphs:  which properties we look at 
and why 

 Challenges with massive graphs 

 Some techniques/algorithms for very large 
graphs: 

 Min-Hash sketches of reachability sets 

 All-Distances sketches 



Graph Datasets: 
Represent relations between “things” 

Bowtie structure of the Web Broder et. al. 2001 

Dolphin interactions 



Graph Datasets 

 Hyperlinks (the Web) 

 Social graphs (Facebook, Twitter, LinkedIn,…) 

 Email logs, phone call logs , messages 

 Commerce transactions (Amazon purchases) 

 Road networks 

 Communication networks 

 Protein interactions 

 … 



Properties 

 Directed/Undirected 

 Snapshot or with time dimension (dynamic) 

 One or more types of entities (people, 
pages, products) 

 Meta data associated with nodes 

 Some graphs are really large: billions of 
edges for Facebook and Twitter graphs 



Mining the link structure: 
 Node/Network-level properties 

 Connected/Strongly connected components 

 Diameter (longest shortest s-t path) 

 Effective diameter (90% percentile of pairwise 
distance) 

 Distance distribution (number of pairs within 
each distance)   

 Degree distribution 

 Clustering coefficient: Ratio of the number of 
closed triangles to open triangles. 



Diameter 

Diameter is 3 



Distance distribution of  

Distance 1:  5 
Distance 2: 5 
Distance 3: 1 



Triangles 

Open triangle 



Triangles 

closed triangle 



Triangles 

 Social graphs have many more 
closed triangle than random graphs 

 “Communities” have more closed 
triangles 



…Mining the link structure 

• Centrality  (who are the most important 
nodes?) 

• Similarity of nodes (link prediction, targeted 
ads, friend/product recommendations, Meta-
Data completion) 

• Communities: set of nodes that are more 
tightly related to each other than to others 

• “cover:”  set of nodes with good coverage 
(facility location,  influence maximization)  



Communities Example (overlapping) 

Star Wars 



Communities Example (overlapping) 

Ninjago 



Communities Example (overlapping) 

Bad Guys 



Communities Example (overlapping) 

Good Guys 



Also a good “cover” 



Centrality 

Central Guys 



Centrality 
Which are the most important nodes ?   

…  answer depends on what we want to capture: 
 Degree (in/out): largest number of followers, 

friends.  Easy to compute locally.   Spammable. 
 Eigenvalue (PageRank):  Your importance/ 

reputation recursively depend on that of your 
friends 

 Betweenness:  Your value as a “hub” -- being 
on a shortest path between many pairs. 

 Closeness:  Centrally located, able to  quickly 
reach/infect many nodes. 



Centrality 

Central with respect 
to all measures 



Computing on Very Large Graphs  
 Many applications, platforms, algorithms 

 Clusters (Map Reduce, Hadoop) when applicable 

 iGraph/Pregel better with edge traversals 

 (Semi-)streaming : pass(es), keep small info (per-node) 

 General algorithm design principles :  

 settle for approximations 

 keep total computation/ communication/ 
storage  “linear” in the size of the data 

 Parallelize (minimize chains of dependencies) 

 Localize dependencies 



Next: Node sketches 
(this lecture and the next one) 

 Min-Hash sketches of reachability sets 

 All-distances sketches (ADS)  

 Connectivity sketches (Guha/McGregor) 

Sketching: 

 Compute a sketch for each node, efficiently 

 From sketch(es) can estimate properties that 
are “harder”  to compute exactly 



Review (lecture 2): Min Hash Sketches 

 “Items”  𝑽  

 Random hash function 𝒉: 𝑽 → [𝟎, 𝟏]  

 For a subset 𝑵 ⊂ 𝑽 we get a sketch 𝒔(𝑵) 

 From 𝒔(𝑵) we can:   

 Estimate cardinality |𝑵|,  

 Obtain a random sample of 𝑵,  

 Estimate similarity, union, sketch merged sets 

 Basic sketch (𝒌 = 𝟏) : maintain the minimum 𝒉(𝑵) 



Review: Min-Hash Sketches 

k-mins sketch: Use 𝑘 “independent” hash functions: ℎ1, ℎ2, … , ℎ𝑘  

Track the respective minimum 𝑦1, 𝑦2, … , 𝑦𝑘 for each function. 

Bottom-k sketch:  Use a single hash function: ℎ  
Track the 𝑘  smallest values  𝑦1, 𝑦2, … , 𝑦𝑘  

k-partition sketch:  Use a single hash function: ℎ′ 
Use the first  log2 𝑘  bits of  ℎ′(𝑥) to map 𝑥 uniformly  to one of 𝑘 
parts.  Call the remaining bits ℎ(x). 
For 𝑖 = 1,… , 𝑘 : Track the minimum hash value 𝑦𝑖 of the elements 
in part 𝑖. 

 𝑘 values 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒌 from the range of the hash function 
(distribution).  

All sketches are the same for 𝑘 = 1 



Sketching Reachability Sets 



Reachability Set of 

Size 4 



Reachability Set of 

Size 13 



Why sketch reachability sets ? 

From reachability sketch(es) we can:   

 Estimate cardinality  of reachability set 

 Get a sample of the reachable nodes 

 Estimate relations between reachability sets 
(e.g., Jaccard similarity) 

Exact computation is costly: 𝑂(𝑚𝑛)  with 𝑛 
nodes and  𝑚 edges, representation size is 
massive: does not  scale to large networks!  

 



Min-Hash sketches of all 
Reachability sets 

hash values 𝐡(𝒗) ∼ 𝑼[𝟎, 𝟏] 
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Min-Hash sketches of all 
Reachability Sets: 𝑘 = 1  

For each 𝑣:   𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗 ↝ 𝒖

 𝒉(𝒖)  

Depending on application, may also want 
to include node ID in sketch:  

𝐚𝐫𝐠𝐦𝐢𝐧
𝒗 ↝ 𝒖

 𝒉(𝒖)  

 



Min-Hash sketches of all 
Reachability Sets: 𝑘 = 1  

𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗 ↝ 𝒖

 𝒉(𝒖)  

0.37 

0.23 
0.85 

0.45 

0.06 

0.95 

0.77 
0.69 

0.93 

0.32 

0.28 

0.34 

0.12 

{0.23} 

{0.06} {0.06} 

{0.06} 
{0.06} 

{0.12} 

{0.12} 

{0.12} 

{0.12} 

{0.12} {0.23} 

{0.23} 

{0.23} 



Min-Hash sketches of all Reachability 
Sets: bottom-2 (𝑘 = 2)  

For each 𝑣:   𝐬 𝒗 ← 𝐛𝐨𝐭𝐭𝐨𝐦−𝟐
𝒗 ↝ 𝒖

 𝒉(𝒖)  



Min-Hash sketches of all 
Reachability Sets: bottom-2 
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Next: Computing Min-Hash sketches of 
all reachability sets efficiently 

Sketch size for a node: 𝑂(𝑘)  

Total computation ≈ 𝑂(𝑘𝑚)    

Algorithms/methods: 

 Graphs searches (say BFS) 

 Dynamic programming/ Distributed 



Computing Min-Hash Sketches of all 
Reachability Sets: 𝑘 = 1  BFS method 

 𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗 ↝ 𝒖

 𝒉(𝒖)  

Iterate over nodes 𝑢  by increasing  ℎ(𝑢):  

Visit nodes 𝑣 through a reverse search from 𝑢:  

 IF s 𝑣 = ∅,   

 𝑠 𝑣 ← ℎ(𝑢) 

 Continue search on inNeighbors(𝑣) 

 ELSE, truncate search at 𝑣 



𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗 ↝ 𝒖

 𝒉(𝒖)  
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Compute Min-Hash sketches of all 
Reachability Sets: 𝑘 = 1, BFS  



Computing Min-Hash sketches of all 
reachability sets: 𝑘 = 1  BFS method 

Analysis: 

Each arc is used exactly once 𝑂(𝑚) 

 

 



Parallelizing BFS-based Min-Hash 
computation  

Each graph search depends on all previous 
ones: seems like we need to perform 𝑛 
searches sequentially. 

 

How can we reduce dependencies ? 

 



Parallelizing BFS-based Min-Hash 
computation  

Idea (𝑘 = 1): 

 Create a super-node of  the 𝑛/2 lowest hash 
nodes. 

 Perform a (reverse) search from super-node and 
mark all nodes that are accessed.  

 Concurrently perform searches: 

 From the lowest-hash 𝑛/2 nodes (sequentially) 

 From the highest-hash  𝑛/2 (sequentially). 
Prune searches also at marked nodes 



Parallelizing BFS-based Min-Hash 
computation  

Correctness:    

 For the lower 𝒏/𝟐 hash values: computation is 
the same.   

 For the higher 𝒏/𝟐: 

We do not know the minimum reachable hash 
from higher-hash nodes, but we do know it is 
one of the lower 𝑛/2 hash values.  This is all we 
need to know for correct pruning. 



Parallelizing BFS-based Min-Hash 
computation  

We recursively apply this to each of the 
lower/higher sets: 

This only gives us 𝒏/𝟐 instead of 𝒏 
sequential searches. 

How can we obtain more parallelism ? 



Parallelizing BFS-based Min-Hash 
computation  

Super-nodes created in recursion 

 

Nodes ordered by ℎ(𝑢) 

The depth of dependencies is at most log2𝑛 

 The total number of edge traversals can 
increase by a factor of log2𝑛 



Computing Min-Hash Sketches of all 
Reachability Sets: bottom-𝑘,  BFS method 

𝐬 𝒗 ← 𝐛𝐨𝐭𝐭𝐨𝐦−𝒌 
𝒗 ↝ 𝒖

 𝒉(𝒖)  

Next: Computing sketches using the BFS method 
for k>1 



Computing Min-Hash Sketches of all 
Reachability Sets: bottom-𝑘,  BFS method 

𝐬 𝒗 ← 𝐛𝐨𝐭𝐭𝐨𝐦−𝒌 
𝒗 ↝ 𝒖

 𝒉(𝒖)  

Iterate over nodes 𝑢  by increasing  ℎ(𝑢):  

Visit nodes 𝑣 through a reverse search from 𝑢:  

 IF s 𝑣 < 𝑘,   

 𝑠 𝑣 ← 𝑠 𝑣 ∪ {ℎ 𝑢 } 

 Continue search on inNeighbors(𝑣) 

 ELSE, truncate search at 𝑣 
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Min-Hash sketches of all 
Reachability Sets: bottom-2 



Computing Min-Hash Sketches of all Reachability 
Sets: 𝑘 = 1  Distributed (DP) 

Next: back to 𝑘 = 1.    
We present another method to compute the 
sketches.  The algorithm has fewer dependencies. 
It is specified for each node.  It is suitable for 
computation that is: 
 
 Distributed, Asynchronous 
 Dynamic Programming (DP) 
 Multiple passes on the set of arcs 



Computing Min-Hash Sketches of all Reachability 
Sets: 𝑘 = 1  Distributed (DP) 

 𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗 ↝ 𝒖

 𝒉(𝒖)  

Initialize 𝐬 𝒗 ← 𝒉(𝒗)  

 IF s 𝑣  is initialized/updated, send 𝑠(𝑣) 
to inNeighbors(𝑣) 

 IF value 𝑥 is received from neighbor: 

 𝑠 𝑣 ← min{𝑠 𝑣 , 𝑥} 



DP computation of Min-Hash sketches 𝑘 = 1  

Initialize: 𝐬 𝒗 ← 𝒉(𝒗)  
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DP computation of Min-Hash sketches 𝑘 = 1  

Send to inNeighbors 
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DP computation of Min-Hash sketches 𝑘 = 1  

Update 
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DP computation of Min-Hash sketches 𝑘 = 1  

If updated, send 
to inNeighbors 
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DP computation of Min-Hash sketches 𝑘 = 1  

Update 
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DP computation of Min-Hash sketches 𝑘 = 1  

If updated, send to 
inNeighbors.  Done.  
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Analysis of DP: Edge traversals  
Lemma:  Each arc is used in expectation <  ln 𝒏 times.  

Proof:  We bound the expected number of 
updates of 𝒔(𝒗). (similar to lecture2) 

 Consider nodes 𝑣 = 𝑢1, 𝑢2, … in order  that 
ℎ(𝑢𝑖)  is propagated to (can reach) 𝑣. 

 The probability that h(𝑢𝑖) updates s(𝑣) : 
𝐏𝐫 [𝒉 𝒖𝒊 < 𝐦𝐢𝐧𝒉 𝒖𝒋

𝒋<𝒊

] = 𝟏

𝒊
 

 Summing over nodes (linearity of expectation): 
 𝟏

𝒊
= 𝑯𝒏 < ln 𝒏

𝒏
𝒊=𝟏  



Analysis of DP: dependencies 

The longest chain of dependencies is at most 
the longest shortest path (the diameter of the 
graph) 



Next: All-Distances Sketches (ADS) 

Often we care about distance, not only 
reachability:   

  Nodes that are closer to you, in distance or in 
Dijkstra (Nearest-Neighbor) rank, are more 
meaningful. 

 We want a sketch that supports distance-
based queries. 

 



Applications of ADSs 
 

Estimate node/subset/network level properties 
that are expensive to compute exactly: 



Applications of ADSs 
 

 Distance distribution, effective diameter 

 Closeness centrality 

 Similarity  (e.g., Jaccard similarity of 𝑑-hop 
neighborhoods or 𝑥 nearest neighbors, closeness) 

 Distance oracles 

 Tightness of 𝐹 ⊂ 𝑉 as a community  

 Coverage of 𝐹 ⊂ 𝑉  
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