
Leveraging Big Data

Instructors:

http://www.cohenwang.com/edith/bigdataclass2013

Disclaimer: This is the first time we are offering this
class (new material also to the instructors!)
• EXPECT many glitches
• Ask questions

Edith Cohen

Amos Fiat

Haim Kaplan

Tova Milo

What is Big Data ?
Huge amount of information, collected continuously:
network activity, search requests, logs, location data,
tweets, commerce, data footprint for each person ….

What’s new ?

 Scale: terabytes -> petabytes -> exabytes -> …

 Diversity: relational, logs, text, media, measurements

 Movement: streaming data, volumes moved around

Eric Schmidt (Google) 2010: “Every 2 Days We
Create As Much Information As We Did Up to 2003”

The Big Data Challenge

To be able to handle and leverage this
information, to offer better services, we need

 Architectures and tools for data storage,
movement, processing, mining, ….

 Good models

Big Data Implications

• Many classic tools are not all that relevant
– Can’t just throw everything into a DBMS

• Computational models:
– map-reduce (distributing/parallelizing computation)
– data streams (one or few sequential passes)

• Algorithms:
– Can’t go much beyond “linear” processing
– Often need to trade-off accuracy and computation cost

• More issues:
– Understand the data: Behavior models with links to

Sociology, Economics, Game Theory, …
– Privacy, Ethics

This Course

Selected topics that

• We feel are important

• We think we can teach

• Aiming for breadth

– but also for depth and developing good working
understanding of concepts

http://www.cohenwang.com/edith/bigdataclass2013

Today

• Short intro to synopsis structures
• The data streams model
• The Misra Gries frequent elements summary

 Stream algorithm (adding an element)
 Merging Misra Gries summaries

• Quick review of randomization
• Morris counting algorithm

 Stream counting
 Merging Morris counters

• Approximate distinct counting

Synopsis (Summary) Structures

Examples: random samples, sketches/projections,
histograms, …

A small summary of a large data set that
(approximately) captures some statistics/properties
we are interested in.

Data 𝒙 Synopsis 𝑺

Query a synopsis: Estimators

A function 𝑓 we apply to a synopsis 𝑺 in order to

obtain an estimate 𝑓 (𝑺) of a
property/statistics/function 𝑓(𝒙) of the data 𝒙

Data 𝒙 Synopsis 𝑺

? 𝑓(𝒙) 𝑓 (𝑺)

Synopsis Structures

Useful features:

 Easy to add an element

 Mergeable : can create summary of union
from summaries of data sets

 Deletions/“undo” support

 Flexible: supports multiple types of queries

A small summary of a large data set that
(approximately) captures some statistics/properties
we are interested in.

Mergeability

Data 1 Synopsis 1

Data 2 Synopsis 2

Data 1 + 2 Synopsis 12

Enough to consider merging two sketches

Why megeability is useful

Synopsis 1

Synopsis 5
S. 1 ∪ 2

Synopsis 4 Synopsis 3

Synopsis 2

S. 1 ∪ 2 ∪ 5

S. 3 ∪ 4

 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5

Synopsis Structures: Why?

Data can be too large to:

 Keep for long or even
short term

 Transmit across the
network

 Process queries over
in reasonable
time/computation

Data, data, everywhere. Economist 2010

The Data Stream Model

 Data is read sequentially in
one (or few) passes

 We are limited in the size of
working memory.

 We want to create and
maintain a synopsis which
allows us to obtain good
estimates of properties

Streaming Applications

 Network management:
traffic going through high
speed routers (data can not
be revisited)

 I/O efficiency (sequential
access is cheaper than
random access)

 Scientific data, satellite feeds

Streaming model

Sequence of elements from some domain

 <x1, x2, x3, x4, >

 Bounded storage:

 working memory << stream size

 usually O(log𝑘𝑛) or O(𝑛𝛼) for 𝛼 < 1

 Fast processing time per stream element

What can we compute over a stream ?

Some functions are easy: min, max, sum, …

We use a single register 𝒔, simple update:

• Maximum: Initialize 𝒔 ← 0

 For element 𝒙 , 𝒔 ← max 𝒔, 𝒙

• Sum: Initialize 𝒔 ← 0

 For element 𝒙 , 𝒔 ← 𝒔 + 𝒙

32, 112, 14, 9, 37, 83, 115, 2,

The “synopsis” here is a single value.
It is also mergeable.

Frequent Elements

 Elements occur multiple times, we want to
find the elements that occur very often.

 Number of distinct element is 𝒏

 Stream size is 𝒎

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

Frequent Elements

Applications:

 Networking: Find “elephant” flows

 Search: Find the most frequent queries

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

Zipf law: Typical frequency distributions are highly
skewed: with few very frequent elements.
Say top 10% of elements have 90% of total occurrences.
We are interested in finding the heaviest elements

Frequent Elements: Exact Solution

Exact solution:

 Create a counter for each distinct element on its first
occurrence

 When processing an element, increment the counter

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

32 12 14 7 6 4

Problem: Need to maintain 𝑛 counters.
 But can only maintain 𝑘 ≪ 𝑛 counters

Frequent Elements: Misra Gries 1982

Processing an element 𝒙

 If we already have a counter for 𝒙, increment it

 Else, If there is no counter, but there are fewer than 𝑘
counters, create a counter for 𝒙 initialized to 𝟏.

 Else, decrease all counters by 𝟏. Remove 𝟎 counters.

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

32 12 14 12 7 12 4
𝑛 = 6
𝑘 = 3

𝑚 = 11

Frequent Elements: Misra Gries 1982

Processing an element 𝒙

 If we already have a counter for 𝒙, increment it

 Else, If there is no counter, but there are fewer than 𝑘
counters, create a counter for 𝒙 initialized to 𝟏.

 Else, decrease all counters by 𝟏. Remove 𝟎 counters.

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

Query: How many times 𝒙 occurred ?
 If we have a counter for 𝒙, return its value
 Else, return 𝟎.

This is clearly an under-estimate.
What can we say precisely?

 Misra Gries 1982 : Analysis
How many decrements to a particular 𝒙 can we have ?

 ⟺ How many decrement steps can we have ?

 Suppose total weight of structure (sum of counters) is 𝑚′

 Total weight of stream (number of occurrences) is 𝑚

 Each decrement step results in removing 𝑘 counts from
structure, and not counting current occurrence of the
input element. That is 𝑘 + 1 “uncounted” occurrences.

 ⇒ There can be at most
𝑚−𝑚′

𝑘+1
 decrement steps

 ⇒ Estimate is smaller than true count by at most
𝒎−𝒎′

𝒌+𝟏

 Misra Gries 1982 : Analysis

Estimate is smaller than true count by at most
𝒎−𝒎′

𝒌+𝟏

⇒ We get good estimates for 𝑥 when the number

of occurrences ≫
𝑚−𝑚′

𝑘+1

 Error bound is inversely proportional to 𝑘

 The error bound can be computed with summary:
We can track 𝑚 (simple count), know 𝑚’ (can be
computed from structure) and 𝑘.

 MG works because typical frequency distributions
have few very popular elements “Zipf law”

Merging two Misra Gries Summaries
[ACHPWY 2012]

Basic merge:

 If an element 𝑥 is in both structures, keep one
counter with sum of the two counts

 If an element 𝑥 is in one structure, keep the
counter

Reduce: If there are more than 𝒌 counters

 Take the 𝑘 + 1 th largest counter

 Subtract its value from all other counters

 Delete non-positive counters

Merging two Misra Gries Summaries

 7 6 14 32 12 14

32 12 14 7 6

Basic Merge:

Merging two Misra Gries Summaries

32 12 14 7 6

4th largest

Reduce since there are more than 𝒌 = 𝟑 counters :

 Take the 𝑘 + 1 th = 4th largest counter

 Subtract its value (2) from all other counters

 Delete non-positive counters

Merging MG Summaries: Correctness

Claim: Final summary has at most 𝑘 counters

Proof: We subtract the (𝑘 + 1)th largest from
everything, so at most the 𝑘 largest can remain
positive.

 Claim: For each element, final summary count is

smaller than true count by at most
𝑚−𝑚′

𝑘+1

Merging MG Summaries: Correctness

Claim: For each element, final summary count is

smaller than true count by at most
𝑚−𝑚′

𝑘+1

 Part 1:
Total occurrences: 𝑚1
In structure: 𝑚1′

Count loss: ≤
𝒎𝟏−𝒎𝟏′

𝒌+𝟏

Part 2:
Total occurrences: 𝑚2
In structure: 𝑚2′

Count loss: ≤
𝒎𝟐−𝒎𝟐′

𝒌+𝟏

Proof: “Counts” for element 𝑥 can be lost in part1,
part2, or in the reduce component of the merge
We add up the bounds on the losses

Reduce loss is at most 𝑿 = (𝒌 + 𝟏)th largest counter

Merging MG Summaries: Correctness

Part 1:
Total occurrences: 𝑚1
In structure: 𝑚1′

Count loss: ≤
𝒎𝟏−𝒎𝟏′

𝒌+𝟏

Part 2:
Total occurrences: 𝑚2
In structure: 𝑚2′

Count loss: ≤
𝒎𝟐−𝒎𝟐′

𝒌+𝟏

⇒ “Count loss” of one element is at most

𝒎𝟏−𝒎𝟏′

𝒌+𝟏
+

𝒎𝟐−𝒎𝟐′

𝒌+𝟏
+ 𝑿

Reduce loss is at most 𝑿 = (𝒌 + 𝟏)th largest counter

Merging MG Summaries: Correctness

⇒ at most
𝑚 − 𝑚′

𝑘 + 1
 uncounted occurrences

Counted occurrences in structure:
 After basic merge and before reduce: 𝑚1

′ + 𝑚2′
 After reduce: 𝑚′

Claim: m1
′ + m2

′ − 𝑚′ ≥ 𝑋 𝑘 + 1

Proof: 𝑋 are erased in the reduce step in each of the
𝑘 + 1 largest counters. Maybe more in smaller counters.

 “Count loss” of one element is at most

𝒎𝟏−𝒎𝟏′

𝒌+𝟏
+

𝒎𝟐−𝒎𝟐′

𝒌+𝟏
+ 𝑿 ≤

𝟏

𝒌+𝟏
𝒎𝟏 + 𝒎𝟐 − 𝒎′

Using Randomization

• Misra Gries is a deterministic structure

• The outcome is determined uniquely by the
input

• Usually we can do much better with
randomization

Randomization in Data Analysis

Often a critical tool in getting good results

 Random sampling / random projections as a
means to reduce size/dimension

 Sometimes data is treated as samples from
some distribution, and we want to use the data
to approximate that distribution (for prediction)

 Sometimes introduced into the data to mask
insignificant points (for robustness)

Randomization: Quick review

 Random variable (discrete or continuous) 𝑿

 Probability Density Function (PDF)

 𝒇𝑿(𝒙) : Probability/density of 𝑿 = 𝒙

Properties: 𝒇𝑿 𝒙 ≥ 𝟎 𝒇𝑿 𝒙
∞

−∞
𝒅𝒙 = 𝟏

 Cumulative Distribution Function (CDF)

 𝑭𝑿 𝒙 = 𝒇𝑿 𝒕
𝒙

−∞
𝒅𝒕 : probability that 𝑿 ≤ 𝒙

 Properties: 𝑭𝑿 𝒙 monotone non-decreasing
from 0 to 1

Quick review: Expectation

 Expectation: “average” value of 𝑿 :

 𝝁 = 𝑬 𝑿 = 𝒙 𝒇𝑿 𝒙
∞

−∞
𝒅𝒙

 Linearity of Expectation:
𝑬[𝒂𝑿 + 𝒃] = 𝒂𝑬[𝑿] + 𝒃

 For random variables 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, . . . , 𝑿𝒌

𝑬 𝑿𝒊

𝒌

𝒊=𝟏

= 𝑬[𝑿𝒊]

𝒌

𝒊=𝟏

Quick review: Variance

 Variance
𝐕 𝑿 = 𝝈𝟐 = 𝑬[𝑿 − 𝝁)𝟐

= (𝒙 − 𝝁)𝟐𝒇𝑿 𝒙 𝒅𝒙

∞

−∞

 Useful relations: 𝝈𝟐 = 𝑬 𝒙𝟐 − 𝝁𝟐

 𝐕[𝒂𝑿 + 𝒃] = 𝒂𝟐𝑽[𝑿]

 The standard deviation is 𝝈 = 𝑽[𝑿]

 Coefficient of Variation
𝝈

𝝁

Quick review: CoVariance
 CoVariance (measure of dependence between two

random variables) 𝑿, 𝒀

Cov 𝑿, 𝒀 = 𝝈 𝑿, 𝒀 = 𝑬 𝑿 − 𝝁𝑿 𝒀 − 𝝁𝒀
= 𝐄 𝐗𝐘 − 𝝁𝑿𝝁𝒀

 𝑿, 𝒀 are independent ⟹ 𝝈 𝑿, 𝒀 = 𝟎

 Variance of the sum of 𝑿𝟏, 𝑿𝟐,…, 𝑿𝒌

𝐕 𝑿𝒊

𝒌

𝒊=𝟏

= 𝐂𝐨𝐯[𝑿𝒊, 𝑿𝒋]

𝒌

𝒊,𝒋=𝟏

= 𝑽[𝑿𝒊]

𝒌

𝒊=𝟏

+ 𝐂𝐨𝐯[𝑿𝒊, 𝑿𝒋]

𝒌

𝒊≠𝒋

 When (pairwise) independent

Back to Estimators

A function 𝑓 we apply to “observed data” (or to a

“synopsis”) 𝑺 in order to obtain an estimate 𝑓 (𝑺) of a
property/statistics/function 𝑓(𝒙) of the data 𝒙

Data 𝒙 Synopsis 𝑺

? 𝑓(𝒙) 𝑓 (𝑺)

Quick Review: Estimators

 Error err 𝑓 = 𝑓 𝑺 − 𝑓(𝒙)

 Bias Bias 𝑓 𝒙] = E[err 𝑓] = 𝐸[𝑓] − 𝑓(𝒙)
 When Bias = 0 estimator is unbiased

 Mean Square Error (MSE):

 E err 𝑓
2

= 𝑉 𝒇 + Bias 𝒇
2

 Root Mean Square Error (RMSE): √𝑀𝑆𝐸

A function 𝑓 we apply to “observed data” (or to a

“synopsis”) 𝑺 in order to obtain an estimate 𝑓 (𝑺) of a
property/statistics/function 𝑓(𝒙) of the data 𝒙

Back to stream counting

• Count: Initialize 𝒔 ← 0

 For each element, 𝒔 ← 𝒔 + 𝟏

What if we are happy with an approximate count ?

1, 1, 1, 1, 1, 1, 1, 1,

Register (our synopsis) size (bits) is ⌈log2 𝑛⌉
where 𝑛 is the current count

Can we use fewer bits ? Important when we have
many streams to count, and fast memory is scarce
(say, inside a backbone router)

Morris Algorithm 1978

Idea: track 𝐥𝐨𝐠 𝒏 instead of 𝒏

 Use 𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏 bits instead of 𝐥𝐨𝐠 𝒏 bits

The first streaming algorithm

Stream counting:

 Stream of +1 increments

 Maintain an approximate count

1, 1, 1, 1, 1, 1, 1, 1,

Morris Algorithm

Maintain a “log” counter 𝒙

 Increment: Increment with probability 𝟐−𝒙

 Query: Output 𝟐𝒙 − 𝟏

1, 1, 1, 1, 1, 1, 1, 1, Stream:

Counter 𝒙 : 0

𝑝 = 2−𝑥: 1

1 1 2 2 2 2 3 3

Estimate 𝒏 : 0 1 1 3 3 3 3 7 7

1, 2, 3, 4, 5, 6, 7, 8, Count 𝒏:
1

2

1

2

1

4

1

4

1

4

1

4

1

8

1

8

Morris Algorithm: Unbiasedness

 When 𝒏 = 𝟏, 𝒙 = 𝟏,

 estimate is 𝑛 = 𝟐𝟏 − 𝟏 = 𝟏

 When 𝒏 = 𝟐,

 with 𝑝 =
1

2
 , 𝒙 = 𝟏 , 𝑛 = 𝟏

 with 𝑝 =
1

2
 , 𝒙 = 𝟐 , 𝑛 = 𝟐𝟐 − 𝟏 = 𝟑

 Expectation: E 𝒏 =
𝟏

𝟐
∗ 𝟏 +

𝟏

𝟐
∗ 𝟑 = 𝟐

 𝒏 = 𝟑, 𝟒, 𝟓 … by induction….

Morris Algorithm: …Unbiasedness

 𝑿𝒏 is the random variable corresponding to
the counter 𝑥 when the count is 𝒏

 We need to show that

 E 𝑛 = 𝐄 𝟐𝑿𝒏 − 𝟏 = 𝒏

 That is, to show that 𝐄 𝟐𝑿𝒏 = 𝒏 + 𝟏

𝐄 𝟐𝑿𝒏 = 𝐏𝐫𝐨𝐛 𝑿𝒏−𝟏 = 𝒋 𝐄 𝟐𝑿𝒏 𝑿𝒏−𝟏 = 𝒋]

𝒋≥𝟏

• We next compute: 𝐄 𝟐𝑿𝒏 𝑿𝒏−𝟏 = 𝒋]

Morris Algorithm: …Unbiasedness

Computing 𝐄 𝟐𝑿𝒏 𝑿𝒏−𝟏 = 𝒋]:

• with probability 𝒑 = 𝟏 − 𝟐−𝒋: 𝒙 = 𝒋, 2𝑥 = 2𝑗

• with probability 𝒑 = 𝟐−𝒋: 𝒙 = 𝒋 + 𝟏, 2𝑥 = 2𝑗+1

𝐄 𝟐𝑿𝒏 𝑿𝒏−𝟏 = 𝒋] = 𝟏 − 𝟐−𝒋 𝟐𝒋 + 𝟐−𝒋𝟐𝒋+𝟏

= 𝟐𝒋 − 𝟏 + 𝟐 = 𝟐𝒋 + 𝟏

Morris Algorithm: …Unbiasedness

= 𝐏𝐫𝐨𝐛 𝑿𝒏−𝟏 = 𝒋 (𝟐𝐣+𝟏)

𝒋≥𝟏

= 𝐏𝐫𝐨𝐛 𝑿𝒏−𝟏 = 𝒋 (𝟐𝐣−𝟏) +

𝒋≥𝟏

 𝐏𝐫𝐨𝐛 𝑿𝒏−𝟏 = 𝒋 𝟐

𝒋≥𝟏

𝐄 𝟐𝑿𝒏 𝑿𝒏−𝟏 = 𝒋] = 𝟐𝒋 + 𝟏

𝐄 𝟐𝑿𝒏 = 𝐏𝐫𝐨𝐛 𝑿𝒏−𝟏 = 𝒋 𝐄 𝟐𝑿𝒏 𝑿𝒏−𝟏 = 𝒋]

𝒋≥𝟏

= 𝐄 𝟐𝑿𝒏−𝟏 − 𝟏 = 𝒏 − 𝟏by induction hyp. 𝟏

= 𝒏 + 𝟏

Morris Algorithm: Variance

How good is the estimate?

• The r.v.’s 𝑛 = 2𝑋𝑛 − 1and 𝑛 + 1 = 𝑛 = 2𝑋𝑛
have the same variance V 𝑛 = 𝑉[𝑛 + 1]

• 𝑉 𝑛 + 1 = 𝐸 22𝑋𝑛 − (𝑛 + 1)2

• We can show 𝐸 22𝑋𝑛 =
3

2
𝑛2 +

3

2
𝑛 + 1

• This means 𝑉 𝑛 ≈
1

2
𝑛2 and CV =

σ

𝜇
 ≈

1

2

How to reduce the error ?

Morris Algorithm: Reducing variance 1

 𝑉 𝑛 = σ2 ≈
1

2
𝑛2 and CV =

σ

𝜇
≈

1

2

Dedicated Method: Base change –

IDEA: Instead of counting 𝐥𝐨𝐠𝟐 𝒏, count 𝐥𝐨𝐠𝒃 𝒏

 Increment counter with probability 𝒃−𝒙

When 𝒃 is closer to 1, we increase accuracy but
also increase counter size.

Morris Algorithm: Reducing variance 2

 𝑉 𝑛 = σ2 ≈
1

2
𝑛2 and CV =

σ

𝜇
≈

1

2

Generic Method:

 Use 𝒌 independent counters 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒌

 Compute estimates
𝒁𝒊 = 𝟐𝒚𝒊 − 𝟏

 Average the estimates

𝒏′ =
 𝒁𝒊

𝒌
𝒊=𝟏

𝒌

 Reducing variance by averaging

𝒌 (pairwise) independent estimates 𝒁𝒊 with
expectation 𝝁 and variance 𝝈𝟐.

The average estimator 𝒏′ =
 𝒁𝒊

𝒌
𝒊=𝟏

𝒌

 Expectation: 𝑬 𝒏′ =
𝟏

𝒌
 𝑬 𝒁𝒊 =

𝟏

𝒌
𝒌𝝁 = 𝝁𝒌

𝒊=𝟏

 Variance:
𝟏

𝒌

𝟐
 𝑽 𝒁𝒊 =

𝟏

𝒌

𝟐
𝒌𝝈𝟐 =

𝝈𝟐

𝒌
𝒌
𝒊=𝟏

 CV :
𝝈

𝝁
 decreases by a factor of 𝒌

 Merging Morris Counters

 We have two Morris counters 𝒙, 𝒚 for streams
𝑋, 𝑌 of sizes 𝑛𝑥 , 𝑛𝑦

 Would like to merge them: obtain a single
counter 𝒛 which has the same distribution (is
a Morris counter) for a stream of size 𝑛𝑥 + 𝑛𝑦

 Merging Morris Counters

Merge the Morris counts 𝒙, 𝒚 (into 𝒙):
 For 𝑖 = 1 … 𝒚
 Increment 𝒙 with probability 𝟐−𝑥+𝒊−𝟏

 Morris-count stream 𝑋 to get 𝒙

 Morris-count stream 𝑌 to get 𝒚

Correctness for 𝒙 = 0: at all steps we have we
𝒙 = 𝑖 − 1 and probability= 1 . In the end we have 𝒙 = 𝒚

Correctness (Idea): We will show that the final value
of 𝒙 “corresponds” to counting 𝑌 after X

 Merging Morris Counters: Correctness

We want to achieve the same effect as if the
Morris counting was applied to a concatenation
of the streams 𝑋 𝑌

 We consider two scenarios :

 1. Morris counting applied to 𝑌

 2. Morris counting applied to 𝑌 after 𝑋

We want to simulate the result of (2) given 𝒚
(result of (1)) and 𝒙

 Merging Morris Counters: Correctness

Associate an (independent) random u(𝑧) ∼ 𝑈[0,1]
with each element 𝑧 of the stream

 Process element 𝑧 : Increment 𝒙 if u(𝑧) < 𝟐−𝒙

Restated Morris (for sake of analysis only)

 We “map” executions of (1) and (2) by looking at
the same randomization u.

 We will see that each execution of (1), in terms of
the set of elements that increment the counter,
maps to many executions of (2)

 Merging algorithm:
Correctness Plan

 We fix the whole run (and randomization) on 𝑋.
 We fix the set of elements that result in counter

increments on 𝑌 in (1)
 We work with the distribution of u: 𝑌

conditioned on the above.
 We show that the corresponding distribution

over executions of (2) (set of elements that
increment the counter) emulates our merging
algorithm.

What is the conditional distribution?

• Elements that did not increment counter when
counter value was 𝑥 have 𝑢 𝑧 ≥ 2−𝑥

• Elements that did increment counter have
𝑢 𝑧 ≤ 2−𝑥

1, 1, 1, 1, 1, 1, 1, 1, Stream:

𝑝 = 2−𝑥: 1
1

2
 1

2

1

4

1

4

1

4

1

4

1

8

1

8

 𝒖 : [0,1] [
1

2
,1] [0,

1

2
] [

1

4
,1] [

1

4
,1] [

1

4
,1] [0,

1

4
] [

1

8
, 1]

To show correctness of merge, suffices to show:

 Elements of 𝑌 that did not increment in (1) do
not increment in (any corresponding run of) (2)

 Element 𝑧 that had the 𝑖𝑡ℎ increment in (1),
conditioned on 𝑥 in the simulation so far,
increments in (2) with probability 𝟐−𝑥+𝒊−𝟏

We show this inductively.

Also show that at any point 𝑥 ≥ 𝑦′, where 𝑦′ is the
count in (1).

Merge the Morris counts 𝒙, 𝒚 (into 𝒙):
 For 𝑖 = 1 … 𝒚
 Increment 𝒙 with probability 𝟐−𝑥+𝒊−𝟏

The first element of 𝑌 incremented the counter in
(1). It has 𝑢 𝑧 ∈ [0,1].
 The probability that it gets counted in (2) is

Pr u z ≤ 2−𝑥 𝑢 𝑧 ∈ 0,1] = 𝟐−𝑥
 Initially, 𝒙 ≥ y′ = 0. After processing, 𝒚′ = 𝟏. If

𝒙 was initially 0, it is incremented with probability
1, so we maintain 𝒙 ≥ y′.

Merge the Morris counts 𝒙, 𝒚 (into 𝒙):
 For 𝑖 = 1 … 𝒚
 Increment 𝒙 with probability 𝟐−𝑥+𝒊−𝟏

Proof: An element 𝑧 of 𝑌 that did not increment the
counter when its value in (1) was 𝑦′, has 𝑢 𝑧 ∈
[2−𝑦′, 1].

Since we have 𝑥 ≥ 𝑦′, this element will also not

increment in (2), since u 𝑧 ≥ 2−𝑦′
≥ 2−𝑥.

The counter in neither (1) nor (2) changes after
processing 𝑧, so we maintain the relation 𝑥 ≥ 𝑦′.

Merge the Morris counts 𝒙, 𝒚 (into 𝒙):
 For 𝑖 = 1 … 𝒚
 Increment 𝒙 with probability 𝟐−𝑥+𝒊−𝟏

 Elements of 𝑌 that did not increment in (1) do
not increment in (any corresponding run of) (2)

 Element 𝑧 that had the 𝑖𝑡ℎ increment in (1),
conditioned on 𝑥 in the simulation so far,
increments in (2) with probability 𝟐−𝑥+𝒊−𝟏

Merge the Morris counts 𝒙, 𝒚 (into 𝒙):
 For 𝑖 = 1 … 𝒚
 Increment 𝒙 with probability 𝟐−𝑥+𝒊−𝟏

Proof: Element 𝑧 has u 𝑧 ∈ 0, 2−(𝑖−1) (we had
y′ = 𝑖 − 1 before the increment).
 Element 𝑧 increments in (2) ⟺ u 𝑧 ∈ 0, 2−𝑥 .

 Pr u 𝑧 ∈ 0, 2−𝑥 |u 𝑧 ∈ 0, 2− 𝑖−1 = 𝟐−𝑥+𝒊−𝟏

• If we had equality 𝑥 = 𝑦′ = 𝑖 − 1, 𝑥 is incremented
with probability 1, so we maintain the relation 𝑥 ≥ 𝑦′

 Random Hash Functions

For a domain 𝑫 and a probability distribution 𝑭 over 𝑹

A distribution over a family 𝑯 of hash functions ℎ: 𝑫 → 𝑹 with
the following properties:

 Each function ℎ ∈ 𝐻 has a concise representation and it is
easy to choose ℎ ∼ 𝐻

 For each 𝑥 ∈ 𝑫, when choosing ℎ ∼ 𝐻

 ℎ 𝑥 ∼ 𝑭 (ℎ 𝑥 is a random variable with distribution 𝑭)

 The random variables ℎ 𝑥 are independent for different
𝑥 ∈ 𝐷.

We use random hash functions as a way to attach a
“permanent” random value to each identifier in an
execution

Simplified and Idealized

Counting Distinct Elements

Elements occur multiple times, we want to
count the number of distinct elements.

 Number of distinct element is 𝒏 (= 6 in
example)

 Number of elements in this example is 11

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

Counting Distinct Elements:
 Example Applications

 Networking:

 Packet or request streams: Count the number of
distinct source IP addresses

 Packet streams: Count the number of distinct IP
flows (source+destination IP, port, protocol)

 Search: Find how many distinct search
queries were issued to a search engine each
day

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

Distinct Elements: Exact Solution

Exact solution:

 Maintain an array/associative array/ hash table

 Hash/place each element to the table

 Query: count number of entries in the table

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

Problem: For 𝑛 distinct elements, size of table is Ω(𝑛)

But this is the best we can do (Information theoretically) if
we want an exact distinct count.

Distinct Elements: Approximate Counting

IDEA: Size-estimation/Min-Hash technique :
 [Flajolet-Martin 85, C 94]

 Use a random hash function ℎ 𝑥 ∼ 𝑈[0,1]mapping
element IDs to uniform random numbers in [0,1]

 Track the minimum ℎ 𝑥
Intuition: The minimum and 𝑛 are very related :
 With 𝑛 distinct elements, expectation of the minimum

E min ℎ x =
1

𝑛+1

 Can use the average estimator with 𝑘 repetitions

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

Bibliography

Misra Gries Summaries
 J. Misra and David Gries, Finding Repeated Elements. Science of Computer Programming 2, 1982

http://www.cs.utexas.edu/users/misra/scannedPdf.dir/FindRepeatedElements.pdf

 Merging: Agarwal, Cormode, Huang, Phillips, Wei, and Yi, Mergeable Summaries, PODS 2012

Approximate counting (Morris Algorithm)
 Robert Morris. Counting Large Numbers of Events in Small Registers. Commun. ACM, 21(10): 840-

842, 1978
http://www.inf.ed.ac.uk/teaching/courses/exc/reading/morris.pdf

 Philippe Flajolet Approximate counting: A detailed analysis. BIT 25 1985
http://algo.inria.fr/flajolet/Publications/Flajolet85c.pdf

 Merging Morris counters: these slides

Approximate distinct counting
 P. Flajolet and G. N. Martin. Probabilistic counting. In Proceedings of Annual IEEE Symposium

on Foundations of Computer Science (FOCS), pages 76–82, 1983
 E. Cohen Size-estimation framework with applications to transitive closure and reachability,

JCSS 1997

http://www.cs.utexas.edu/users/misra/scannedPdf.dir/FindRepeatedElements.pdf
http://www.cs.utexas.edu/users/misra/scannedPdf.dir/FindRepeatedElements.pdf
http://www.cs.utexas.edu/users/misra/scannedPdf.dir/FindRepeatedElements.pdf
http://www.inf.ed.ac.uk/teaching/courses/exc/reading/morris.pdf
http://www.inf.ed.ac.uk/teaching/courses/exc/reading/morris.pdf
http://www.inf.ed.ac.uk/teaching/courses/exc/reading/morris.pdf
http://algo.inria.fr/flajolet/Publications/Flajolet85c.pdf
http://algo.inria.fr/flajolet/Publications/Flajolet85c.pdf
http://algo.inria.fr/flajolet/Publications/Flajolet85c.pdf

