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What is Big Data ? 
Huge amount of information, collected continuously: 
network activity, search requests, logs, location data, 
tweets, commerce, data footprint for each person  …. 

What’s new ? 

 Scale:  terabytes -> petabytes -> exabytes ->  … 

 Diversity: relational, logs, text, media, measurements 

 Movement:  streaming data, volumes moved around  

Eric Schmidt (Google) 2010:  “Every 2 Days We 
Create As Much Information As We Did Up to 2003” 



The Big Data Challenge 

To be able to handle and  leverage this 
information, to offer better services, we need  

 Architectures and tools for data storage, 
movement, processing, mining, …. 

 Good models  



Big Data Implications 

• Many classic tools are not all that  relevant  
– Can’t just throw everything into a DBMS 

• Computational models:   
– map-reduce (distributing/parallelizing computation) 
– data streams (one or few sequential passes) 

• Algorithms:   
– Can’t go much beyond  “linear” processing 
– Often need to trade-off accuracy and computation cost 

• More issues:   
– Understand the data:  Behavior models with links to 

Sociology, Economics, Game Theory, … 
– Privacy, Ethics 

 



This Course 

Selected topics that 

• We feel are important  

• We think we can teach 

• Aiming for breadth 

–  but also for depth and developing good working 
understanding of concepts 

http://www.cohenwang.com/edith/bigdataclass2013 



Today 

• Short intro to synopsis structures 
• The data streams model 
• The Misra Gries frequent elements summary 

 Stream algorithm (adding an element) 
 Merging Misra Gries summaries 

• Quick review of randomization 
• Morris counting algorithm 

 Stream counting 
 Merging Morris counters 

• Approximate distinct counting  



Synopsis (Summary) Structures 

Examples: random samples, sketches/projections, 
histograms, … 

A small summary of a large data set that 
(approximately) captures some statistics/properties 
we are interested in. 

Data 𝒙 Synopsis 𝑺 



Query a synopsis: Estimators 

A function 𝑓  we apply to a synopsis 𝑺 in order to 

obtain an estimate 𝑓 (𝑺) of a 
property/statistics/function 𝑓(𝒙) of the data 𝒙 

Data 𝒙 Synopsis 𝑺 

?    𝑓(𝒙) 𝑓 (𝑺) 



Synopsis Structures 

Useful features: 

 Easy to add an element 

 Mergeable : can create summary of union 
from summaries of data sets 

 Deletions/“undo” support 

 Flexible:  supports multiple types of queries 

A small summary of a large data set that 
(approximately) captures some statistics/properties 
we are interested in. 



Mergeability 

Data 1 Synopsis 1 

Data 2 Synopsis 2 

Data 1 + 2 Synopsis 12 

Enough to consider merging  two sketches 



Why megeability is useful 

Synopsis 1 

Synopsis 5 
S. 1 ∪ 2 

Synopsis 4 Synopsis 3 

Synopsis 2 

S. 1 ∪ 2 ∪ 5 

S. 3 ∪ 4 

 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5  



Synopsis Structures: Why? 

Data can be too large to: 

 Keep for long or even 
short term 

 Transmit across the 
network 

 Process queries over 
in reasonable 
time/computation 

Data, data, everywhere. Economist 2010  



The Data Stream Model 

 Data is read sequentially  in 
one (or few) passes   

 We are limited in the size of 
working memory.   

 We want to create and 
maintain a synopsis which 
allows us to obtain good 
estimates of properties 

 



Streaming Applications 

 Network management: 
traffic going through high 
speed routers (data can not 
be revisited) 

 I/O efficiency  (sequential 
access is cheaper than 
random access) 

 Scientific data, satellite feeds 



Streaming model 

Sequence of elements from some domain 

     <x1, x2, x3, x4, .....  > 

 Bounded storage:   

     working memory <<  stream size   

   usually O(log𝑘𝑛)  or O(𝑛𝛼)  for 𝛼 < 1 

 Fast processing time per stream element 



What can we compute over a stream ? 

Some functions are easy: min, max, sum,  … 

We use a single register 𝒔, simple update:  

• Maximum: Initialize 𝒔 ← 0    

                        For element 𝒙 ,  𝒔 ←  max 𝒔, 𝒙  

• Sum: Initialize 𝒔 ← 0    

              For element 𝒙 ,  𝒔 ←  𝒔 + 𝒙  

 

32, 112, 14, 9, 37, 83, 115, 2, 

The “synopsis” here is a single value.   
It is also mergeable.   



Frequent Elements 

 Elements occur multiple times, we want to 
find the elements that occur very often. 

 Number of distinct element is 𝒏 

 Stream size is 𝒎 

 

32, 12, 14, 32,  7, 12, 32, 7, 6, 12, 4, 



Frequent Elements 

Applications: 

 Networking:  Find “elephant” flows 

 Search:  Find the most frequent queries 

32, 12, 14, 32,  7, 12, 32, 7, 6, 12, 4, 

Zipf law: Typical frequency distributions are highly 
skewed:  with few very frequent elements.  
Say top 10% of elements have 90% of total occurrences. 
We are interested in finding the heaviest elements 



Frequent Elements: Exact Solution 

Exact solution: 

 Create a counter for each distinct element on its first 
occurrence 

 When processing an element, increment the counter 

32, 12, 14, 32,  7, 12, 32, 7, 6, 12, 4, 

32 12 14  7 6 4 

Problem:  Need to maintain 𝑛 counters.   
                  But can only maintain 𝑘 ≪ 𝑛 counters 



Frequent Elements: Misra Gries 1982 

Processing an element 𝒙 

 If we already have a counter for 𝒙, increment it 

 Else, If there is no counter, but there are fewer than 𝑘 
counters, create a counter for 𝒙 initialized to 𝟏. 

 Else, decrease all counters by 𝟏.  Remove 𝟎 counters. 

32, 12, 14, 32,  7, 12, 32, 7, 6, 12, 4, 

32 12 14  12 7 12 4 
𝑛 = 6 
𝑘 = 3 

𝑚 = 11 



Frequent Elements: Misra Gries 1982 

Processing an element 𝒙 

 If we already have a counter for 𝒙, increment it 

 Else, If there is no counter, but there are fewer than 𝑘 
counters, create a counter for 𝒙 initialized to 𝟏. 

 Else, decrease all counters by 𝟏.  Remove 𝟎 counters. 

32, 12, 14, 32,  7, 12, 32, 7, 6, 12, 4, 

Query:  How many times  𝒙 occurred ? 
 If we have  a counter for 𝒙, return its value 
 Else, return 𝟎. 

This is clearly an under-estimate. 
What can we say precisely?   



 Misra Gries 1982 : Analysis 
How many decrements to a particular 𝒙  can we have ? 

      ⟺   How many decrement steps can we have ?  

 Suppose total weight of structure (sum of counters) is 𝑚′  

 Total weight of stream (number of occurrences) is 𝑚 

 Each decrement step results in removing  𝑘 counts from 
structure, and not counting current occurrence of the 
input element.  That is 𝑘 + 1 “uncounted” occurrences. 

  ⇒  There can be at most  
𝑚−𝑚′

𝑘+1
 decrement steps 

 ⇒  Estimate is smaller than true count by at most  
𝒎−𝒎′

𝒌+𝟏
  



 Misra Gries 1982 : Analysis 

Estimate is smaller than true count by at most  
𝒎−𝒎′

𝒌+𝟏
  

⇒ We get good estimates for 𝑥 when the number 

of occurrences ≫
𝑚−𝑚′

𝑘+1
 

 
 Error bound is inversely proportional to 𝑘 

 The error bound can be computed with summary: 
We can track 𝑚 (simple count), know 𝑚’ (can be 
computed from structure) and 𝑘.  

 MG works because typical frequency distributions 
have few very popular elements “Zipf law” 



Merging two Misra Gries Summaries  
[ACHPWY 2012] 

Basic merge: 

  If an element 𝑥 is in both structures, keep one 
counter with sum of the two counts 

  If an element 𝑥 is in one structure, keep the 
counter 

 

 
Reduce: If there are more than 𝒌 counters 

  Take the 𝑘 + 1 th largest counter 

  Subtract its value from all other counters 

  Delete non-positive counters 

 

 



Merging two Misra Gries Summaries 

 7 6 14 32 12 14 

32 12 14  7 6 

Basic Merge: 



Merging two Misra Gries Summaries 

32 12 14  7 6 

4th largest 

Reduce since there are more than 𝒌 = 𝟑 counters : 

  Take the 𝑘 + 1 th = 4th largest counter 

  Subtract its value (2) from all other counters 

  Delete non-positive counters 

 

 



Merging MG Summaries: Correctness 

Claim: Final summary has at most 𝑘 counters 

Proof: We subtract the (𝑘 +  1)th largest from 
everything, so at most the 𝑘 largest can remain 
positive. 

 

 Claim: For each element, final summary count is 

smaller than true count by at most 
𝑚−𝑚′

𝑘+1
 

 

 

 



Merging MG Summaries: Correctness 

Claim: For each element, final summary count is 

smaller than true count by at most 
𝑚−𝑚′

𝑘+1
 

 

 

 Part 1: 
Total occurrences: 𝑚1 
In structure: 𝑚1′ 

Count loss: ≤
𝒎𝟏−𝒎𝟏′

𝒌+𝟏
 

Part 2: 
Total occurrences: 𝑚2 
In structure: 𝑚2′ 

Count loss: ≤
𝒎𝟐−𝒎𝟐′

𝒌+𝟏
 

Proof: “Counts” for element 𝑥 can be  lost in part1, 
part2, or in the reduce component of the merge 
We add up the bounds on the  losses 
 

Reduce loss is at most 𝑿 = (𝒌 + 𝟏)th  largest counter 



Merging MG Summaries: Correctness 

Part 1: 
Total occurrences: 𝑚1 
In structure: 𝑚1′ 

Count loss: ≤
𝒎𝟏−𝒎𝟏′

𝒌+𝟏
 

Part 2: 
Total occurrences: 𝑚2 
In structure: 𝑚2′ 

Count loss: ≤
𝒎𝟐−𝒎𝟐′

𝒌+𝟏
 

⇒  “Count loss” of one element is at most 

            
𝒎𝟏−𝒎𝟏′

𝒌+𝟏
+ 

𝒎𝟐−𝒎𝟐′

𝒌+𝟏
+ 𝑿 

Reduce loss is at most 𝑿 = (𝒌 + 𝟏)th  largest counter 



Merging MG Summaries: Correctness 

⇒ at most 
𝑚 − 𝑚′

𝑘 + 1
 uncounted occurrences 

 

 

 

Counted occurrences in structure:  
 After basic merge and before reduce: 𝑚1

′ + 𝑚2′ 
 After reduce: 𝑚′ 

Claim:  m1
′ + m2

′ − 𝑚′ ≥ 𝑋 𝑘 + 1  

Proof: 𝑋 are erased in the reduce step in each of the 
𝑘 + 1 largest counters.  Maybe more in smaller counters. 

  “Count loss” of one element is at most 

            
𝒎𝟏−𝒎𝟏′

𝒌+𝟏
+ 

𝒎𝟐−𝒎𝟐′

𝒌+𝟏
+ 𝑿 ≤

𝟏

𝒌+𝟏
𝒎𝟏 + 𝒎𝟐 − 𝒎′  

 



Using Randomization 

• Misra Gries is a deterministic structure 

• The outcome is determined uniquely by the 
input 

• Usually we can do much better with 
randomization 



Randomization in Data Analysis 

Often a critical tool in getting good results 

 Random sampling /  random projections as a 
means to reduce size/dimension  

 Sometimes data is treated as samples from 
some distribution, and we want to use the data 
to approximate that distribution (for prediction)  

 Sometimes introduced into the data to mask 
insignificant points (for robustness) 

 



Randomization:  Quick review 

 Random variable (discrete or continuous)  𝑿 

 Probability Density Function (PDF) 

     𝒇𝑿(𝒙) : Probability/density of 𝑿 = 𝒙 

Properties:  𝒇𝑿 𝒙 ≥ 𝟎     𝒇𝑿 𝒙
∞

−∞
𝒅𝒙 = 𝟏 

 Cumulative Distribution Function (CDF) 

    𝑭𝑿 𝒙 =  𝒇𝑿 𝒕
𝒙

−∞
𝒅𝒕 :   probability that  𝑿 ≤ 𝒙 

 Properties:  𝑭𝑿 𝒙  monotone non-decreasing 
from 0 to 1 



Quick review: Expectation 

 Expectation: “average” value of 𝑿 : 

                           𝝁 = 𝑬 𝑿 =  𝒙 𝒇𝑿 𝒙
∞

−∞
𝒅𝒙 

 Linearity of Expectation: 
𝑬[𝒂𝑿 + 𝒃] = 𝒂𝑬[𝑿] + 𝒃 

     

      For random variables   𝑿𝟏, 𝑿𝟐, 𝑿𝟑, . . . , 𝑿𝒌 

𝑬  𝑿𝒊

𝒌

𝒊=𝟏

=  𝑬[𝑿𝒊]

𝒌

𝒊=𝟏

  

    



Quick review: Variance 

 Variance  
𝐕 𝑿 = 𝝈𝟐 = 𝑬[ 𝑿 − 𝝁)𝟐

=  (𝒙 − 𝝁)𝟐𝒇𝑿 𝒙 𝒅𝒙

∞

−∞

 

 Useful relations:    𝝈𝟐 = 𝑬 𝒙𝟐 − 𝝁𝟐 

                                       𝐕[𝒂𝑿 + 𝒃] = 𝒂𝟐𝑽[𝑿] 

 The standard deviation is 𝝈 =  𝑽[𝑿] 

 Coefficient of Variation 
𝝈

𝝁
   

 



Quick review: CoVariance 
 CoVariance  (measure of dependence between two 

random variables) 𝑿, 𝒀 

Cov 𝑿, 𝒀 = 𝝈 𝑿, 𝒀 =  𝑬 𝑿 − 𝝁𝑿  𝒀 − 𝝁𝒀  
= 𝐄 𝐗𝐘 − 𝝁𝑿𝝁𝒀 

 
 𝑿, 𝒀 are independent ⟹  𝝈 𝑿, 𝒀 = 𝟎 

 

 Variance of the sum of  𝑿𝟏, 𝑿𝟐,…, 𝑿𝒌 

𝐕  𝑿𝒊

𝒌

𝒊=𝟏

=  𝐂𝐨𝐯[𝑿𝒊, 𝑿𝒋]

𝒌

𝒊,𝒋=𝟏

=  𝑽[𝑿𝒊]

𝒌

𝒊=𝟏

+  𝐂𝐨𝐯[𝑿𝒊, 𝑿𝒋]

𝒌

𝒊≠𝒋

 

 
 When (pairwise) independent 



Back to Estimators 

A function 𝑓  we apply to “observed data” (or to a 

“synopsis”) 𝑺 in order to obtain an estimate 𝑓 (𝑺) of a 
property/statistics/function 𝑓(𝒙) of the data 𝒙 

Data 𝒙 Synopsis 𝑺 

?    𝑓(𝒙) 𝑓 (𝑺) 



Quick Review: Estimators 

 Error    err 𝑓 = 𝑓 𝑺 − 𝑓(𝒙) 

 Bias    Bias 𝑓   𝒙] = E[err 𝑓 ] = 𝐸[𝑓 ]  − 𝑓(𝒙)    
 When Bias =  0 estimator is unbiased 

 Mean Square Error (MSE):    

            E err 𝑓 
2

= 𝑉 𝒇 + Bias 𝒇 
2

  

 Root Mean Square Error (RMSE):  √𝑀𝑆𝐸 
 

A function 𝑓  we apply to “observed data” (or to a 

“synopsis”) 𝑺 in order to obtain an estimate 𝑓 (𝑺) of a 
property/statistics/function 𝑓(𝒙) of the data 𝒙 



Back to stream counting 

• Count:  Initialize 𝒔 ← 0    

                  For each element,  𝒔 ←  𝒔 + 𝟏  

What if we are happy  with an approximate count ? 

1, 1, 1, 1, 1, 1, 1, 1, 

Register (our synopsis) size (bits) is ⌈log2 𝑛⌉  
where 𝑛 is the current count 

Can we use fewer bits ?  Important when we have 
many streams to count, and fast memory is scarce 
(say, inside a backbone router) 



Morris Algorithm 1978 

Idea:  track 𝐥𝐨𝐠 𝒏 instead of 𝒏 

            Use 𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏 bits instead of 𝐥𝐨𝐠 𝒏 bits 

The first streaming algorithm 

Stream counting:  

    Stream of +1 increments 

    Maintain an approximate count 

1, 1, 1, 1, 1, 1, 1, 1, 



Morris Algorithm 

Maintain a “log” counter 𝒙 

 Increment:  Increment with probability 𝟐−𝒙 

 Query: Output 𝟐𝒙 − 𝟏 

1, 1, 1, 1, 1, 1, 1, 1, Stream: 

Counter 𝒙 : 0 

𝑝 = 2−𝑥: 1 

1 1 2 2 2 2 3 3 

Estimate 𝒏  : 0 1 1 3 3 3 3 7 7 

1, 2, 3, 4, 5, 6, 7, 8, Count 𝒏: 
1

2
  

1

2
  

1

4
  

1

4
  

1

4
  

1

4
  

1

8
  

1

8
  



Morris Algorithm: Unbiasedness 

 When 𝒏 = 𝟏,  𝒙 = 𝟏,  

            estimate is 𝑛 = 𝟐𝟏 − 𝟏 = 𝟏 

 When 𝒏 = 𝟐,  

          with  𝑝 =
1

2
 , 𝒙 = 𝟏 , 𝑛 = 𝟏 

          with  𝑝 =
1

2
 , 𝒙 = 𝟐 , 𝑛 = 𝟐𝟐 − 𝟏 = 𝟑 

  Expectation: E 𝒏 =
𝟏

𝟐
∗ 𝟏 +

𝟏

𝟐
∗ 𝟑 = 𝟐 

 𝒏 = 𝟑, 𝟒, 𝟓 …    by induction…. 



Morris Algorithm: …Unbiasedness 

 𝑿𝒏  is the random variable corresponding to 
the counter 𝑥 when the count is 𝒏 

 We need to show that 

                 E 𝑛 = 𝐄 𝟐𝑿𝒏 − 𝟏 = 𝒏 

 That is, to show that  𝐄 𝟐𝑿𝒏 = 𝒏 + 𝟏 

𝐄 𝟐𝑿𝒏 =  𝐏𝐫𝐨𝐛 𝑿𝒏−𝟏 = 𝒋 𝐄 𝟐𝑿𝒏 𝑿𝒏−𝟏 = 𝒋]

𝒋≥𝟏

 

• We next compute: 𝐄 𝟐𝑿𝒏 𝑿𝒏−𝟏 = 𝒋] 

 

 



Morris Algorithm: …Unbiasedness 

 

Computing 𝐄 𝟐𝑿𝒏 𝑿𝒏−𝟏 = 𝒋]: 

• with probability 𝒑 = 𝟏 − 𝟐−𝒋: 𝒙 = 𝒋, 2𝑥 = 2𝑗  

• with probability 𝒑 = 𝟐−𝒋: 𝒙 = 𝒋 + 𝟏, 2𝑥 = 2𝑗+1 

 

𝐄 𝟐𝑿𝒏 𝑿𝒏−𝟏 = 𝒋] = 𝟏 − 𝟐−𝒋 𝟐𝒋 + 𝟐−𝒋𝟐𝒋+𝟏

= 𝟐𝒋 − 𝟏 + 𝟐 = 𝟐𝒋 + 𝟏   

 

 

 



Morris Algorithm: …Unbiasedness 

=  𝐏𝐫𝐨𝐛 𝑿𝒏−𝟏 = 𝒋 (𝟐𝐣+𝟏)

𝒋≥𝟏

 

=  𝐏𝐫𝐨𝐛 𝑿𝒏−𝟏 = 𝒋 (𝟐𝐣−𝟏) +

𝒋≥𝟏

 𝐏𝐫𝐨𝐛 𝑿𝒏−𝟏 = 𝒋  𝟐

𝒋≥𝟏

 

 

𝐄 𝟐𝑿𝒏 𝑿𝒏−𝟏 = 𝒋]  = 𝟐𝒋 + 𝟏   

𝐄 𝟐𝑿𝒏 =  𝐏𝐫𝐨𝐛 𝑿𝒏−𝟏 = 𝒋 𝐄 𝟐𝑿𝒏 𝑿𝒏−𝟏 = 𝒋]

𝒋≥𝟏

 

= 𝐄 𝟐𝑿𝒏−𝟏 − 𝟏 = 𝒏 − 𝟏by induction hyp. 𝟏 

= 𝒏 + 𝟏 



Morris Algorithm: Variance 

How good is the estimate?   

• The r.v.’s  𝑛 = 2𝑋𝑛 − 1and 𝑛 + 1 = 𝑛 = 2𝑋𝑛  
have the same variance V 𝑛 = 𝑉[𝑛 + 1] 

• 𝑉 𝑛 + 1 = 𝐸 22𝑋𝑛 − (𝑛 + 1)2 

• We can show 𝐸 22𝑋𝑛 =
3

2
𝑛2 +

3

2
𝑛 + 1 

• This means 𝑉 𝑛 ≈
1

2
𝑛2  and CV =

σ

𝜇
 ≈

1

2
  

 
How to reduce the error ? 



Morris Algorithm: Reducing variance 1 

 𝑉 𝑛 = σ2 ≈
1

2
𝑛2  and CV =

σ

𝜇
≈

1

2
  

Dedicated Method:  Base change –  

IDEA: Instead of counting 𝐥𝐨𝐠𝟐 𝒏, count 𝐥𝐨𝐠𝒃 𝒏  

 Increment counter with probability 𝒃−𝒙  

When 𝒃 is closer to 1, we increase accuracy but 
also increase counter size.  

 



Morris Algorithm: Reducing variance 2 

 𝑉 𝑛 = σ2 ≈
1

2
𝑛2  and CV =

σ

𝜇
≈

1

2
  

Generic Method:   

 Use 𝒌 independent counters  𝒚𝟏, 𝒚𝟐, … , 𝒚𝒌  

 Compute estimates 
𝒁𝒊 = 𝟐𝒚𝒊 − 𝟏  

 Average the estimates  

𝒏′ =
 𝒁𝒊 

𝒌
𝒊=𝟏

𝒌
 

 



   Reducing variance by averaging 

𝒌 (pairwise) independent estimates 𝒁𝒊 with 
expectation 𝝁 and variance 𝝈𝟐. 

The average estimator   𝒏′ =
 𝒁𝒊 

𝒌
𝒊=𝟏

𝒌
 

 Expectation:  𝑬 𝒏′ =
𝟏

𝒌
 𝑬 𝒁𝒊 =

𝟏

𝒌
𝒌𝝁 = 𝝁𝒌

𝒊=𝟏  

 Variance:   
𝟏

𝒌

𝟐
 𝑽 𝒁𝒊 =

𝟏

𝒌

𝟐
𝒌𝝈𝟐 =

𝝈𝟐

𝒌
𝒌
𝒊=𝟏  

 CV : 
𝝈

𝝁
 decreases by a factor of 𝒌 



 Merging Morris Counters 

 We have two Morris counters  𝒙, 𝒚  for streams 
𝑋, 𝑌 of sizes 𝑛𝑥 , 𝑛𝑦 

 Would like to merge them:  obtain a single 
counter  𝒛  which has the same distribution (is 
a Morris counter) for a stream of size 𝑛𝑥  +  𝑛𝑦 



 Merging Morris Counters 

Merge the Morris counts 𝒙, 𝒚 (into 𝒙): 
 For  𝑖 = 1 … 𝒚  
 Increment 𝒙 with probability 𝟐−𝑥+𝒊−𝟏  

  Morris-count stream 𝑋 to get 𝒙 

  Morris-count stream 𝑌 to get 𝒚 

Correctness for 𝒙 = 0: at all steps we have we  
𝒙 = 𝑖 − 1 and probability= 1 . In the end we have 𝒙 = 𝒚 

Correctness (Idea): We will show that the final value 
of 𝒙 “corresponds” to counting 𝑌 after X 



 Merging Morris Counters: Correctness 

 

We want to achieve the same effect as if the 
Morris counting was applied to a concatenation 
of the streams 𝑋 𝑌 

 We consider two scenarios : 

 1. Morris counting applied to 𝑌 

 2. Morris counting applied to 𝑌 after 𝑋  

 
We want to simulate the result of (2) given 𝒚 
(result of (1)) and 𝒙 

 

 



 Merging Morris Counters: Correctness 

Associate an (independent) random u(𝑧) ∼ 𝑈[0,1] 
with each element 𝑧 of the stream 

 Process element 𝑧 :  Increment 𝒙 if u(𝑧) < 𝟐−𝒙 

 

Restated Morris  (for sake of analysis only) 

 We “map” executions of (1) and (2) by looking at 
the same randomization u. 

 We will see that each execution of (1), in terms of 
the set of elements that increment the counter, 
maps to many executions of (2) 



 Merging algorithm:  
Correctness Plan 

 We fix the whole run (and randomization) on 𝑋.   
 We fix the set of elements that result in counter 

increments on 𝑌 in (1)  
 We work with the distribution of u: 𝑌 

conditioned on the above. 
 We show that the corresponding distribution 

over executions of (2) (set of elements that 
increment the counter) emulates our merging 
algorithm.  



What is the conditional distribution? 

• Elements that did not increment counter when 
counter value was 𝑥 have 𝑢 𝑧 ≥ 2−𝑥 

• Elements that did increment counter have 
𝑢 𝑧 ≤ 2−𝑥 

1, 1, 1, 1, 1, 1, 1, 1, Stream: 

𝑝 = 2−𝑥: 1 
1

2
  1

2
  

1

4
  

1

4
  

1

4
  

1

4
  

1

8
  

1

8
  

 𝒖 : [0,1] [
1

2
,1] [0,

1

2
] [

1

4
,1] [

1

4
,1] [

1

4
,1] [0,

1

4
] [

1

8
, 1] 



To show correctness of merge, suffices to show: 

 Elements of 𝑌 that did not increment in (1) do 
not increment in (any corresponding run of) (2) 

 Element 𝑧 that had the 𝑖𝑡ℎ increment in (1), 
conditioned on 𝑥 in the simulation so far, 
increments in (2) with probability  𝟐−𝑥+𝒊−𝟏  

We show this inductively.  

Also show that at any point 𝑥 ≥ 𝑦′, where 𝑦′ is the 
count in (1). 

Merge the Morris counts 𝒙, 𝒚 (into 𝒙): 
 For  𝑖 = 1 … 𝒚  
 Increment 𝒙 with probability 𝟐−𝑥+𝒊−𝟏  



The first element of 𝑌 incremented the counter in 
(1).  It has 𝑢 𝑧 ∈ [0,1]. 
 The probability that it gets counted in (2) is  

Pr u z ≤ 2−𝑥  𝑢 𝑧 ∈ 0,1 ] =  𝟐−𝑥 
 Initially, 𝒙 ≥ y′ = 0.  After processing, 𝒚′ = 𝟏. If 

𝒙 was initially 0, it is incremented with probability 
1, so we maintain 𝒙 ≥ y′.   

Merge the Morris counts 𝒙, 𝒚 (into 𝒙): 
 For  𝑖 = 1 … 𝒚  
 Increment 𝒙 with probability 𝟐−𝑥+𝒊−𝟏  



Proof: An element 𝑧 of 𝑌 that did not increment the 
counter when its value in (1) was 𝑦′, has 𝑢 𝑧 ∈
[2−𝑦′, 1]. 

Since we have 𝑥 ≥ 𝑦′, this element will also not 

increment in (2), since u 𝑧 ≥ 2−𝑦′
≥ 2−𝑥. 

The counter in neither (1) nor (2) changes after 
processing 𝑧, so we maintain the relation 𝑥 ≥ 𝑦′.  

Merge the Morris counts 𝒙, 𝒚 (into 𝒙): 
 For  𝑖 = 1 … 𝒚  
 Increment 𝒙 with probability 𝟐−𝑥+𝒊−𝟏  

 Elements of 𝑌 that did not increment in (1) do 
not increment in (any corresponding run of) (2) 



 Element 𝑧 that had the 𝑖𝑡ℎ increment in (1), 
conditioned on 𝑥 in the simulation so far, 
increments in (2) with probability  𝟐−𝑥+𝒊−𝟏  

 

Merge the Morris counts 𝒙, 𝒚 (into 𝒙): 
 For  𝑖 = 1 … 𝒚  
 Increment 𝒙 with probability 𝟐−𝑥+𝒊−𝟏  

Proof: Element 𝑧 has u 𝑧 ∈ 0, 2−(𝑖−1)  (we had 
y′ = 𝑖 − 1 before the increment). 
  Element 𝑧 increments in (2) ⟺ u 𝑧 ∈ 0, 2−𝑥 .  

 Pr u 𝑧 ∈ 0, 2−𝑥  |u 𝑧 ∈ 0, 2− 𝑖−1 = 𝟐−𝑥+𝒊−𝟏 

• If we had equality 𝑥 = 𝑦′ = 𝑖 − 1, 𝑥 is incremented 
with probability 1, so we maintain the relation 𝑥 ≥ 𝑦′ 
 



 Random Hash Functions 

For a domain 𝑫 and a probability distribution 𝑭 over 𝑹 

A distribution over a family 𝑯 of hash functions ℎ: 𝑫 → 𝑹  with 
the following properties: 

 Each function  ℎ ∈ 𝐻 has a concise representation and it is 
easy to choose ℎ ∼ 𝐻  

 For each 𝑥 ∈ 𝑫,  when choosing  ℎ ∼ 𝐻   

 ℎ 𝑥 ∼ 𝑭 (ℎ 𝑥  is a random variable with distribution 𝑭) 

 The random variables ℎ 𝑥  are independent for different 
𝑥 ∈ 𝐷. 

We use random hash functions  as a way to attach a 
“permanent” random value to each identifier in an 
execution 

Simplified and Idealized 



Counting Distinct Elements 

Elements occur multiple times, we want to 
count the number of distinct elements. 

 Number of distinct element is 𝒏  (= 6 in 
example) 

 Number of elements in this example is 11 

32, 12, 14, 32,  7, 12, 32, 7, 6, 12, 4, 



Counting Distinct Elements: 
 Example Applications 

 Networking:   

 Packet or request streams: Count the number of 
distinct source IP addresses 

 Packet streams: Count the number of distinct  IP 
flows (source+destination IP, port, protocol) 

 Search:  Find how many distinct search 
queries were issued to a search engine each 
day 

32, 12, 14, 32,  7, 12, 32, 7, 6, 12, 4, 



Distinct Elements: Exact Solution 

Exact solution: 

 Maintain an array/associative array/ hash table 

 Hash/place each element to the table 

 Query: count number of entries in the table 

32, 12, 14, 32,  7, 12, 32, 7, 6, 12, 4, 

Problem:  For 𝑛 distinct elements,  size of table is Ω(𝑛) 

But this is the best we can do (Information theoretically) if 
we want an exact distinct count.  



Distinct Elements: Approximate Counting 

IDEA: Size-estimation/Min-Hash technique :  
    [Flajolet-Martin 85, C 94] 

 Use a random hash function ℎ 𝑥 ∼ 𝑈[0,1]mapping 
element IDs to uniform random numbers in [0,1] 

 Track the minimum ℎ 𝑥  
Intuition: The minimum and 𝑛 are very related  : 
 With 𝑛 distinct elements, expectation of the minimum 

E min ℎ x =
1

𝑛+1
 

 Can use the average estimator with 𝑘 repetitions  
 

32, 12, 14, 32,  7, 12, 32, 7, 6, 12, 4, 
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