
IBM Haifa Research

1

Finding Data in the Cloud using Distributed Hash

Tables (Chord)

IBM Haifa Research

Storage Systems

IBM Haifa Research

2

In File Systems

 The App needs to know the path

– /home/user/my pictures/…

 The Filesystem looks up the directory structure to find the file’s inode, which

reveals the physical location of the file’s data on disk.

 At Cloud Scale the file system must get distributed

– Millions of different users uploading / downloading files

– Billions of files

 This brings challenges that traditional file systems are not built for

– File system metadata is usually a single point of failure

– File systems must adhere POSIX semantics requiring strong consistency of the file

system metadata

 Something else is required here….

IBM Haifa Research

3

The Abstraction: Distributed hash table (DHT)

Distributed hash table

Distributed application

get (key) data

node node node ….

put(key, data)

Lookup service

lookup(key) node IP address

• Application may be distributed over many nodes
• DHT distributes data storage over many nodes

(File sharing)

(DHash)

(Chord)

Picture taken from the lecture slides “Topics in Data-Intensive Computing

Systems”, given at UBC (http://www.ece.ubc.ca/~matei/EECE571.06/)

http://www.ece.ubc.ca/~matei/EECE571.06/
http://www.ece.ubc.ca/~matei/EECE571.06/
http://www.ece.ubc.ca/~matei/EECE571.06/

IBM Haifa Research

4

The Requirements (Chord)

 Scalability. Billions of keys stored on hundreds or millions of nodes.

– Operations cannot take time that is substantially larger than logarithmic in the number of
keys

 Availability.

– The lookup service must be able to function despite network partitions and node failures.
Chord provides ‘best effort’ availability keeping ‘r’ replicas of each key.

– Note: In the presence of many joins/failures data may be temporarily unavailable until the
network stabilizes.

 Load Balancing.

– Resource usage is evenly distributed among the machines in the system. In a system
with N nodes and K keys, each node holds approximately K/N of the keys.

 Dynamism.

– Nodes can join or leave the system without any downtime

 NOT Covered, but interesting in some cases:

– Authenticated Inserts / Access control.

– Protection against malicious servers.

– Stronger Consistency.

IBM Haifa Research

5

The API (Chord)

 Insert (key, value) – Inserts key/value at r distinct nodes

 Lookup (key) – Returns the value associated with the key

 Update(key, newval)

 Join(n) – Causes a node to add itself as a Chord node, where n is an existing

node

 Leave() – Leave the Chord system

IBM Haifa Research

6

The Chord Structure (Based on Consistent Hashing)

 Choose a good hash function mapping to some m bit domain. Defining a 2m

space.

– A popular choice is SHA1 mapping to 160 bit strings, defining a space of size 2160

 Assign each key and node in the system an ‘m bit identifier’

– For each node apply SHA1 on the node’s IP

– For each human/application readable key apply SHA1 on that key

 Given the identifiers, each key, k, is stored in a node whose identifier, id, is

equal to or follows k, in the identifier space.

IBM Haifa Research

7

The Chord Structure with m=3
Peer-to-Peer Systems, Anthony D. Joseph, John Kubiatowicz, Berkely

6

1

2

6

0

4

2 6

5

1

3

7

2
identifier

circle

identifier

node

X key

successor(1) = 1

successor(2) = 3 successor(6) = 0

If a node with id=7 now joins the system it would capture the key with identifier 6.

Picture taken from a presentation by Anthony D. Joseph and John Kubiatowicz

(Berkely) on peer-to-peer systems

(http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/)

http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/

IBM Haifa Research

8

The Fundamental Properties of Consistent Hashing

 For any set of N nodes and K keys, with high probability:

– Each machine is responsible for at most (1+ε)K/N keys

– When an (N+1)st machine joins or leaves the network, O(K/N) keys are moved (and only

to or from the joining or leaving machine)

 In practice a good hash function such as SHA1 should be sufficient to

achieve the above

 To achieve small ε, each physical node actually needs to run log N ‘virtual’

nodes each with independent identifier over the ring.

IBM Haifa Research

9

Routing in Chord (how do I get to the value of K=6)

 Holding a complete table of the nodes and their ids should do the trick in

O(1) time, but:

– This is a large table to hold.

– This is a constantly changing table.

 Alternatively, let each node know only about its successor.

– A search can take up to O(N) messages.

 Turns out that holding a table of m entries (3 in our example, 160 in the SHA1

case) on each node suffices to locate any key with O(log N) messages.

IBM Haifa Research

10

The Routing Information in Chord

 Each node holds a table that ‘divides’ the identifier circle into exponentially

increasing intervals.

 For each interval, keep the first node, whose identifier is equal to or follows

the interval start point.

 In addition, each node keeps a pointer to its immediate predecessor on the

identifier circle.

0 1 2 3 4 5 6 7

[) [) [)

IBM Haifa Research

11

The Routing Information in Chord – Example

0

4

2 6

5

1

3

7

1
2
4

[1,2)
[2,4)
[4,0)

1
3
0

finger table

start int. node

Pred.

3

Succ.

1

finger table

start int. node

Pred.

0

2
3
5

[2,3)
[3,5)
[5,1)

3
3
0

Succ.

3

finger table

start int. node

Pred.

1

4
5
7

[4,5)
[5,7)
[7,3)

0
0
0

Succ.

0

Picture taken from a presentation by Anthony D. Joseph and John Kubiatowicz

(Berkely) on peer-to-peer systems

(http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/)

http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/

IBM Haifa Research

12

The Routing Information in Chord - Some notes

 Each node stores information about only a small number of other nodes.

– 120 in the case of SHA1.

 The amount of information maintained about other nodes falls exponentially

with the distance between the two nodes.

IBM Haifa Research

13

The Finger Table – Formal Notations

Notation Definition

Finger[k].start (n+2k-1) mode 2m, for 1≤k ≤ m

Finger[k].interval

[finger[k].start, finger[k+1].start), if 1 ≤ k<m

[finger[k].start, n), for k=m

Finger[k].node The first node whose identifier is equal to

of follows n.finger[k].start

successor Imidiate successor of node n on the

identifier circle

predecessor Immidiate predecessor of node n on the

identifier circle

 Node n holds the following finger table:

IBM Haifa Research

14

Routing in Chord – Pseudo Code

// ask node n to find the successor of id

n.find_successor(id)

 n’ = find_predecessor(id);

 return n’.successor;

// search the local table for the closest predecessor of id

n.closest_preceding_node(id)

 for i = m downto 1

 if (finger[i].node (n, id))

 return finger[i].node;

 return n;

IBM Haifa Research

15

Routing in Chord – Pseudo Code

// ask node n to find the predecessor of id

n.find_predecessor(id)

 if (n == successor)

 return n // n is the only node in the network

 n’ = n

 while (id ∉ (n’, n’.successor])

 n’ = n’.closest_preceding_node(id)

 return n’

IBM Haifa Research

16

Routing in Chord – run time

 Theorem: With high probability, the number of nodes that must be contacted

to resolve a successor query in an N-node network is O(log N)

 Denote:

– n is the node wishing to resolve the successor of the key k

– Let p be the predecessor of k. p is the actual node we are looking for.

n

X

k p

IBM Haifa Research

17

Routing in Chord – run time

 Theorem: With high probability, the number of nodes that must be contacted

to resolve a successor query in an N-node network is O(log N)

 Denote:

– n is the node wishing to resolve the successor of the key k

– Let p be the predecessor of k. p is the actual node we are looking for.

– Suppose that p is in the i’th interval of n.

- This does not mean that p actually appears in n’s finger table.

- It merely suggests that this interval is not empty

 n

X

k p

[)

IBM Haifa Research

18

Routing in Chord – run time

 Theorem: With high probability, the number of nodes that must be contacted

to resolve a successor query in an N-node network is O(log N)

 Denote:

– n is the node wishing to resolve the successor of the key k

– Let p be the predecessor of k. p is the actual node we are looking for.

– Suppose that p is in the i’th interval of n.

- This does not mean that p actually appears in n’s finger table.

- It merely suggests that this interval is not empty

– Let f be n.finger[i].node. That is, the first node in n’s i’th interval.

– The distance between n and f is at least 2i-1. However, the distance between f and p is at

most 2i-1
 as both appear in the ith interval.

– Conclusion: By doing a single hop the distance to the key reduced by at least half.

n

X

k p f

[)

IBM Haifa Research

19

Routing in Chord – run time continue

 The maximum distance between a node and a key is 2m

 At each hop, the distance is reduced by half

– After log N steps the distance is at most 2m/N

 Since the nodes are evenly distributed (This is where the high probability

comes from), the expected number of nodes in any interval of size 2m/N is 1.

 With high probability, the number of nodes in any interval of size 2m/N is

bounded by O(log N).

 Even if we traverse those in single steps the total time would still be O(log

N).

IBM Haifa Research

20

Maintaining the routing information

 Maintaining / Initializing the routing information in the presence of
continuous joins and departures of nodes is hard.

 Solution: Periodical update of the finger table and the successor /
predecessor

– Turns out that maintaining the successor and predecessor in the presence of many
changes is enough for queries to succeed, at the cost of the running time.

// Verify n’s immediate pred/succ

// Called periodically.

n.stabilize()

 x = predecessor;

 x = x.successor;

 if (x (predecessor, n))

 predecessor = x

 x = successor;

 x = x.predecessor;

 if (x (n, successor))

Finger[1].node = successor = x;

n n.pred

n.succ n

IBM Haifa Research

21

References

 Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications

(2001) by Ion Stoica , Robert Morris , David Karger , M. Frans Kaashoek , Hari

Balakrishnan

 Topics in Data-Intensive Computing Systems UBC

(http://www.ece.ubc.ca/~matei/EECE571.06/)

 Peer-to-Peer Systems, Anthony D. Joseph, John Kubiatowicz, Berkely course

slides (http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/)

http://www.ece.ubc.ca/~matei/EECE571.06/
http://www.ece.ubc.ca/~matei/EECE571.06/
http://www.ece.ubc.ca/~matei/EECE571.06/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/
http://www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/

