Big Data

Solution to HW 2



Question 1

Parta
Denote the length of the stream by n.
Denote: m = log M

For each point x in the steam, we calculate, for all j = 1, ..., m, the distance d(x, c¢) for all
CES,;.
j

We keep |Sj| < k forall j.

Therefore, assuming that distance calculation is 0(1), we have that the running time of
the algorithm is 0 (nkm) = O(nklog M).

Partb
Denote r; = 2/=forallj =1,..,m.
Denote the optimal k center radius by OPT.

Notice that the described algorithm actually runs m copies of the algorithm we saw in
class in parallel. The j'th copy uses 7j = 2/~ as the guess of OPT. So the guesses are

20,21 22 plogM-1i6 124 .., % When using a certain guess 7y, the algorithm

compares the distances to 2 - 7; = 2 - 2/71 = 2J,

Notice that necessarily 1 < OPT < M, because we have that 1 < d(x,y) < M for all
X #y.

Denote: D = maX,ecy mingeg d(x,c)
[ will prove that: D < 4 - OPT

First, note that necessarily D < M, because it is sufficient to have at least one pointin §
in order to achieve this, and indeed we have at least one point in S (the first point).

Therefore, in the case that OPT > %We have:

D<M<2-0PT <4-0PT

As required.
Let's handle now the case that OPT < % .
In this case, there existindex i € {1, ..., m} such that% < OPT andr; > OPT.

Let's look at how the algorithm operated on ;.

When a point x in the stream is not added to S;, it is due to one of the following reasons:



(1) 3ces; d(x,c) < 2r
@) IS =k

When (1) happens, we can think about x as added to the cluster of c.
We can see that the radius of each cluster would be at most 2r;.
Could it happen that (1) was false but x was not added to S; due to (2)?

Let's imagine for a moment that the algorithm didn't check (2), i.e. didn't care about |S;|
exceeding k.

The distance between any ¢, ¢’ € S; is atleast 2r; > 2 - OPT.

Since optimal k center radius is OPT, every point in S; must be in unique cluster of the
optimal solution. There are only k such clusters, which means that we would finish with
|S;| < k even without checking (2).

It means that for each point x in the stream, if (1) was false, necessarily (2) was false too
and x was added to S;.

Therefore we have that:
Vx €X Jc€S;: d(x,¢c) <2r;
Since we have% < OPT, we get that:

Vx € X Ac € S;: d(x,c) <4-0PT
Therefore we get that:

D = max min d(x,c) < 4-O0PT
XEX CES

As required.

Part c
The algorithm given in class is better in the following:

- Itgives up to k centers (the number of centers we look for) versus k log M,
which is an approximation of the desired number of centers.

- Storage required is O (k) versus O(k log M).

- It doesn't assume the bound M over the pairwise distances.

The algorithm given in class is worse in the following:

- Itgives radius of 8 - OPT versus 4 - OPT.



Question 2

Parta

For each unit vector u € R¢, define a hash function h,: R > {0,1} by:

1, p-u=0
’W@0={0,Z-u<0

Define the following hash family H:
H={h,: u€RY|ul =1}

(%] _ (1+¢€)64

[ will prove that Hisa (68, (1 +¢)6,,1 — ?1, 1 ) locally sensitive hash family.

Y
Claim 1

Letp,q € R%.

Let 6 € [0, ] be the angle between p and q.

Given a vector v € R4, let's say that "v separates p and q" if sign(p - v) # sign(q - v).

Pick a unit vector u € R% randomly uniformly.

Then the probability that u separates p and q is: %

Proof

First, let's consider the case d = 2.
If & = 0, it is obvious that the probability that u separates p and q is: % =0.

Assume now 0 # 0.

Denote by L c R? theline L = {x € R?: x - u = 0} (uis anormal of L).

Then: u separates p and q iff L separates p and q (i.e. p and q are in different sides of L).
For a vector v € R?, denote by a(v) the angle between v and the vector (1,0)7.

Denote by a(L) the angle between L and the vector (1,0)7.

W.l.o.g. assume a(p) < a(q).

Then: L separates p and q iff a(L) € [a(p), a(q)].

By picking u uniformly, a(L) is picked uniformly from [0, z]. Therefore, the probability
that L separates p and q is:



| [a(p), a(q)] | _ a(q) —a(p) _9
| [0,7] | T

As required.

Now, let's go on to the case d > 2.

Denote W = span{p, q}. Since 8 # 0, dim(W) = 2.

Denote Wt = {x € R%: x L W}.

Representuasu =w + w! wherew € W, wt e Wt
Sowehavethatp-u=p-wandq-u=q-w.

Therefore: sign(p - u) # sign(q - u) iff sign(p - w) # sign(q - w).
Let B = {by, b,} be an orthonormal basis for I.

Letp’,q',w’ € R? be the representations of p, g, w in the basis B.

Then:

. . lJ ! ; ! W,
sign(p - w) = sign(p’ - w") = sign (P m)

Wl
sign(q - w) = sign(q’ - w') = sign <q, . ||W'||>

!

Notice that by picking u randomly uniformly from the unit sphere in RY, ||$’||

randomly uniformly from the unit circle in R? (actually w’ might be 0 in case u € W+,
but this case can be neglected as it happens with probability 0, since dim(W+1) < d).

is picked

WI

By the proof for the case d = 2 we have that the probability that separates p and q

liwll

.9
is: —.
Vs
Therefore the probability that u separates p and q is: %.

Now let's prove that Hisa (6, (1+¢€)6,,1 — %, 1- @) locally sensitive hash
family:
Letp,q € R%.

Let 6 € [0, ] be the angle between p and q.



Pick h,, € H randomly uniformly.
Then actually u is picked randomly uniformly from the unit sphere.

Now:

0
Pr(h,(p) = hy(q)) = Pr(u doesn’t separate p and q) = [by claim 1] = 1 — -

If 6 < 6, then:

0 0,
Pr(hy,(p) = hy(q)) = 1 - pe 1- -
If6 = (1 + £)0, then:
0 (1+ )6
Pr(hu(p) = hy(@) =1-— <1 -1

As required.

Partb

:R% - {0,1}* by:

Given k unit vectors uy, ..., u; € R%, define a hash function Ryt
hul,...,uk (p) = (hu1 ®), -, huk (p))
Define the following hash family H:
Hy = {hul,...,uk 2V u; € Rd’ ”uJ” =1}
k k
Let's prove that H, is a (91, 1+ )64, (1 — %) , (1 - @) ) locally sensitive hash
family:
Letp,q € R%.
Let 6 € [0, ] be the angle between p and q.

Pick hy, . u, € Hy randomly uniformly.

Then:

0 k
Pr(Puy 0, @) = Py, @) = Pr (o, ) = oy (@) ¥ = 1, k) = (1= )
If 6 < 6, then:
0\* 0,
Pr (hul,...,uk () = hul,...,uk(Q)) = (1 - E) = (1 - _>

If6 = (1 + £)0, then:
N 1+ £)6,\"
Pr (hul,...,uk (P) = hul,...,uk (CI)) = (1 - E) < (1 - —1>



As required.

Part c
Denote:
e p=1- %
e p,= 1— (1+:)91

ln(pl—l)

e

For all x,y € R? denote the angle between them by:

x .
dist(x,y) = cos_l( 4 )

1yl
Let's define the following algorithm:
Letk = log1/p2 n)
Letc; =6
LetL =%
¢ pi
Notice that:
1
il . in(2)
c 11081/, 1\log1 (5- log 1 (- 1
L= —:’Lc =C (—) 7 = (—) Pi(pz) =cn P1(p2) = Clnln(Pz) = ClTlp
P1 P1 D1

We will use L hash tables T4, ..., T;.. Each hash table T; will use hash function h; from the
family H;, (which I defined in part b), which is a (61, (1+ )8, p¥, p§) locally sensitive
hash family.

Preprocessing:

1. Fori=1,..,L
a. Forj=1,..,n
i. Insertx; to Tj, to the bucket specified by h; (x;).

uery:
Given a query q € R%, we will do the following:

1. Fori=1,..,L



a. Look at the bucket specified by h;(q). Scan all vectors (unless we reach
the limit described below) in this bucket. If we find there a vector x such
that dist(x,q) < (1 + €)6,, we stop and return x.

We will limit the algorithm to check up to total of c,n” vectors, where ¢, = 1200. If we
reach that limit, we stop and return that no appropriate vector was found.

Partd
Denote S = {xy, ..., xp }-
Let g € R be a query, and assume that 3x € S dist(x,q) < 6,.

We need to prove that with probability at least 0.99, the algorithm will return some
y € S such that dist(y,q) < (1 + €)0;.

First, notice that:

k _ logip, () ( 1 )_log” p2 (M)

_ 1
b2 pz D2 n

Denote by E; the event that x will be mapped to the same bucket as g in at least one
hash table, i.e. the event that 3i h;(x) = h;(q).

For each i, Pr(h;(x) # h;(q)) <1 —p¥.

o
[k

1\€1 1\6 1
<) =0 <w
Now, denote by F the number of false positives, i.e. the number of times that a vector
z € S such that dist(z,q) > (1 + €)6; was mapped to the same bucket as q.

Therefore: Pr(—E;) < (1 - pf)L = (1 - Pf)p

Let's bound E (F).

For a vector z € S which is "far" from q, i.e. dist(z,q) > (1 + €)6,, the expected number
of times that z and g are mapped to the same bucket is at most:

L-p¥=cnP- % =c¢ynPL.

In the worst case all n vectors are "far" from g, therefore we can bound E (F) by:
E(F)<n-c¢nP l=¢n”

Denote by E, the event that F < c,n”.

Then:

E(F) < an® 6 1
c,nP T cnP 1200 200

Pr(=E,) = Pr(F > c,n?) < [Markov] <



Notice that if both E; and E, occur, then the algorithm succeeds: E; ensures that at least
one "good" vector is in some bucket. And E, ensures that the number of false positives is
not large enough to prevent the algorithm from finding a "good" vector.

What is the probability that both E; and E, occur?

1 1
Pr(=E; V =E;) < Pr(=E;) + Pr(=E,) < 200 + 500 = 0.01

Therefore:

Pr(E; AE,) >1—0.01=0.99

Therefore, the probability that the algorithm succeeds to return a "good" vector is at
least 0.99, as required.

Let's now analyze the query time complexity.

We have to compute h4(q), ..., h;(q). Each h; is composed of k "atomic” hash functions.
Calculating each "atomic" hash h,(q) is O(d) (need to compute u - q). Therefore the
total costis O(L - k- d) = O(dnp logy/p, (n)) operations.

In addition, we go over at most c,n” vectors and compute the angle between g and each
of them. Computing the angle between 2 vectors is 0(d), therefore the total cost of
angles calculations is: 0(dn”).

So the total query time is:
O(dnp logy/p, (n) + dnp) = O(dnp log1 /p, (n))
Regarding space complexity:

We have L hash tables, each containing n vectors. Actually we can store in the hash
tables only the indices of the vectors rather than the vectors themselves, so the space
needed for this is 0(nL) = 0(n - nP) = 0(n**P).

In addition, we have L - k "atomic" hash functions, each is represented by a vector in R4,
The space needed for thisis O(L - k - d) = O(dnp logy/p, (n)).

So the total space is:

0(n*? + dn”log, p, (n)) < 0(dn'*P)

What can we say about p?



() wey  m(1-2) R
In (%) In(p,) In (1 ¢! +n£)91) 1+¢

Therefore, we get that space complexity is:
1
0 (dn“m)
And time complexity is:
1
0 (dn1+£ logy/p, (n))

In class we neglected the logarithmic factor. If we do the same here, we get:

1
0 (dn1_+£>



Question 3

Let x € R4,

Leteg, 6 > 0.

2
Let—%.

We saw in class that if we pick k hash functions hy, ..., h;: {1, ...,d} = {—1,1} from a 4-
wise independent hash family, and define a matrix M € R¥*4 by M;; = h;(j), then we

o

In our case d = n? and we have n vectors x;, ..., Xn € R4,

have:

1
—|IMx||* — [|x||?
o IMx11% = il

> €||x||2> <5

2n

Let's choose = %,then we getk = =

Define f: R% — R* by: f(x) = %Mx.
Denote y; = f(x;).

Leti € {1, ...,n}. Then we have:

1
Pr(lllyill* = llali”l = elll®) < —

Therefore:
2 2 2 1
mem-4MMI<de)21—;

If we want to "succeed" with all n vectors, we get:

n

1 2 2 2 1
Pr(vi fllyall™ = Tl < ellxl) 2 (1 =

n
The value (1 - %) approaches é as n grows, but it is less thané (which is the required

bound). After consulting Prof. Kaplan, he approved that it is okay to use the bound
(-2

) -
So we got that:

i 2 2 2 n* 1
Pr(vi (1 - o)l < llydl2 < (4 + )l 2 (1) =

Q

As required.

How much space do we need in order to represent the matrix M?



2 :
We actually need to represent k = S—Z hash functions.

As we saw in class, each hash function is of the form
2((asx® + ayx? + a;x + ag) mod T mod 2) — 1
Where T is a prime number between d and 2d and as, ..., a, € {0,1, ..., T — 1}.
Since each hash function can be represented by 4 numbers, we can represent the matrix

MbyO(k)=0 (28—721) numbers.

Notice that each of these numbers (and also T) is smaller than 2d = 2n?, hence each
number can be represented by O (logn) bits. I assume we are supposed to neglect this
logarithmic factor.



Question 4

Parta
First, note that if u, v € R? are unit vectors, then:
u-v=|ull-lv|- cos(@(u, v)) =1-1- cos(@(u, v)) = Cos(e(u, v))
Therefore:
1 (w-v)?=cos?(6(u,v)) Vuvesi?
Now, letc > 1.
Leti,j € {1,...,n}.
Denote e; = (1,0,0, ...,0)T € R4,
Let A € R%*? be a rotation matrix such that Ax; = e;.
Denote w = Ax;.
Since A is a rotation matrix, it preserves angles, i.e.:
0(x;,x;) = 6(ey, w)
= cos? (H(xi,xj)) = cos?(6(ey,w))
Since e;, w € S471, we get by (1) that:
cos? (B(xl-,xj)) = (e; - w)?
On the other hand:
e w=w
Where wj is the first coordinate of w.
Therefore:
(2) cos? (B(xi,x]-)) = w?
Note that w is actually a random unit vector drawn uniformly from the unit sphere.

Lett € (1, d). Using the inequality we saw in class, we have that:

t _t(d-1)
Pr(wf > —) <e 2d
d
(inclassweused t = 1 + ¢).

Substituting (2) we get:



t-d/2

t _t(d-1) _
PI’(COSZ (Q(Xi,xj)) > E) <e 2d <[ford=2]<e 2d =e %

This is true for a single pair i, j.

If we consider all pairs, we get (using the union bound):

NS

. t n _t n? _
(3) Pr (Ell,] cos? (B(xi,xj)) > E) < (Z)e i< e
We want that:

n? _t 1
—p i<
2 €= n¢
t
=> e 1< 27+
t
= -3 <log2—(c+2)logn

= t>—4log2+4(c+2)logn

Choose t = 4(c + 2) logn. Then we have:

4(c+ 2)logn 1
_— S nc

Pr (Eli,j cos? (H(xl-,xj)) > y

Denote ¢’ = 4(c + 2). Then:

'l 1
Pr <Vi,j cos? (0(x, %)) < Zgn> >1

As required.

Partb

Let ¢ be a large number.
By part a, we get that with probability at least 1 — % we have that:

4(c+2)logn

Vi,j cos? (H(xl-,x]-)) < 7

logn .
2D 1ogn 1o Almost 0 because d >> logn.

Therefore cos? (Q(xi,xj)) = (xl- . x]-)z is almost O for all i, j.

Therefore (xl- . xj) is very close to 0 for all i, j.

t



This means that with high probability 1 — % we have that x;, x; are almost orthogonal

forall i, j.



