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Question 1 

Part a 

Denote the length of the stream by 𝑛. 

Denote: 𝑚 = log𝑀 

For each point 𝑥 in the steam, we calculate, for all 𝑗 = 1,… ,𝑚, the distance 𝑑(𝑥, 𝑐) for all 
𝑐 ∈ 𝑆௝. 

We keep ห𝑆௝ห ≤ 𝑘 for all 𝑗. 

Therefore, assuming that distance calculation is 𝑂(1), we have that the running time of 
the algorithm is 𝑂(𝑛𝑘𝑚) = 𝑶(𝒏𝒌 𝐥𝐨𝐠𝑴). 

 

Part b 

Denote 𝑟௝ = 2௝ିଵ for all 𝑗 = 1,… ,𝑚. 

Denote the optimal k center radius by 𝑂𝑃𝑇. 

Notice that the described algorithm actually runs 𝑚 copies of the algorithm we saw in 
class in parallel. The 𝑗′𝑡ℎ copy uses 𝑟௝ = 2௝ିଵ as the guess of 𝑂𝑃𝑇. So the guesses are 

2଴, 2ଵ, 2ଶ, … , 2୪୭୥ெିଵ i.e. 1,2,4,… , ெ
ଶ

. When using a certain guess 𝑟௝, the algorithm 

compares the distances to 2 ⋅ 𝑟௝ = 2 ⋅ 2௝ିଵ = 2௝. 

Notice that necessarily 1 ≤ 𝑂𝑃𝑇 ≤ 𝑀, because we have that 1 ≤ 𝑑(𝑥, 𝑦) ≤ 𝑀 for all 
𝑥 ≠ 𝑦. 

Denote:  𝐷 = max௫∈௑   min௖∈ௌ   𝑑(𝑥, 𝑐) 

I will prove that:  𝐷 ≤ 4 ⋅ 𝑂𝑃𝑇 

First, note that necessarily 𝐷 ≤ 𝑀, because it is sufficient to have at least one point in 𝑆 
in order to achieve this, and indeed we have at least one point in 𝑆 (the first point). 

Therefore, in the case that 𝑂𝑃𝑇 ≥ ெ
ଶ

 we have: 

𝐷 ≤ 𝑀 ≤ 2 ⋅ 𝑂𝑃𝑇 < 4 ⋅ 𝑂𝑃𝑇 

As required. 

Let's handle now the case that 𝑂𝑃𝑇 < ெ
ଶ

 . 

In this case, there exist index 𝑖 ∈ {1,… ,𝑚} such that  ௥೔
ଶ
≤ 𝑂𝑃𝑇 and 𝑟௜ > 𝑂𝑃𝑇. 

Let's look at how the algorithm operated on 𝑆௜. 

When a point 𝑥 in the stream is not added to 𝑆௜, it is due to one of the following reasons: 



(1) ∃𝑐 ∈ 𝑆௜    𝑑(𝑥, 𝑐) < 2𝑟௜ 
(2) |𝑆௜| = 𝑘 

When (1) happens, we can think about 𝑥 as added to the cluster of 𝑐. 

We can see that the radius of each cluster would be at most 2𝑟௜. 

Could it happen that (1) was false but 𝑥 was not added to 𝑆௜ due to (2)? 

Let's imagine for a moment that the algorithm didn't check (2), i.e. didn't care about |𝑆௜| 
exceeding 𝑘. 

The distance between any 𝑐, 𝑐ᇱ ∈ 𝑆௜ is at least 2𝑟௜ > 2 ⋅ 𝑂𝑃𝑇. 

Since optimal k center radius is 𝑂𝑃𝑇, every point in 𝑆௜ must be in unique cluster of the 
optimal solution. There are only 𝑘 such clusters, which means that we would finish with 
|𝑆௜| ≤ 𝑘 even without checking (2). 

It means that for each point 𝑥 in the stream, if (1) was false, necessarily (2) was false too 
and 𝑥 was added to 𝑆௜. 

Therefore we have that: 

∀𝑥 ∈ 𝑋    ∃𝑐 ∈ 𝑆௜:    𝑑(𝑥, 𝑐) ≤ 2𝑟௜ 

Since we have ௥೔
ଶ
≤ 𝑂𝑃𝑇, we get that: 

∀𝑥 ∈ 𝑋    ∃𝑐 ∈ 𝑆௜:    𝑑(𝑥, 𝑐) ≤ 4 ⋅ 𝑂𝑃𝑇 

Therefore we get that: 

𝐷 = max
௫∈௑

  min
௖∈ௌ

  𝑑(𝑥, 𝑐) ≤ 4 ⋅ 𝑂𝑃𝑇 

As required. 

 

Part c 

The algorithm given in class is better in the following: 

- It gives up to 𝑘 centers (the number of centers we look for) versus 𝑘 log𝑀, 
which is an approximation of the desired number of centers. 

- Storage required is 𝑂(𝑘) versus 𝑂(𝑘 log𝑀). 
- It doesn't assume the bound 𝑀 over the pairwise distances. 

The algorithm given in class is worse in the following: 

- It gives radius of 8 ⋅ 𝑂𝑃𝑇 versus 4 ⋅ 𝑂𝑃𝑇. 

 

  



Question 2 

Part a 

For each unit vector 𝑢 ∈ 𝑅ௗ, define a hash function ℎ௨: 𝑅ௗ → {0,1} by: 

ℎ௨(𝑝) = ൜  1  ,      𝑝 ⋅ 𝑢   ≥ 0
0  ,      𝑝 ⋅ 𝑢 < 0

� 

Define the following hash family 𝐻: 

𝐻 = {ℎ௨ ∶     𝑢 ∈ 𝑅ௗ, ‖𝑢‖ = 1} 

I will prove that 𝐻 is a (𝜃ଵ, (1 + 𝜀)𝜃ଵ, 1 −
ఏభ
గ
, 1 − (ଵାఌ)ఏభ

గ
) locally sensitive hash family. 

 

Claim 1 

Let 𝑝, 𝑞 ∈ 𝑅ௗ. 

Let 𝜃 ∈ [0, 𝜋] be the angle between 𝑝 and 𝑞. 

Given a vector 𝑣 ∈ 𝑅ௗ, let's say that "𝑣 separates 𝑝 and 𝑞" if 𝑠𝑖𝑔𝑛(𝑝 ⋅ 𝑣) ≠ 𝑠𝑖𝑔𝑛(𝑞 ⋅ 𝑣). 

Pick a unit vector 𝑢 ∈ 𝑅ௗ randomly uniformly. 

Then the probability that 𝑢 separates 𝑝 and 𝑞 is:  ఏ
గ

 

 

Proof 

First, let's consider the case 𝑑 = 2. 

If 𝜃 = 0, it is obvious that the probability that 𝑢 separates 𝑝 and 𝑞 is:  ఏ
గ
= 0. 

Assume now 𝜃 ≠ 0. 

Denote by 𝐿 ⊂ 𝑅ଶ the line 𝐿 = {𝑥 ∈ 𝑅ଶ:    𝑥 ⋅ 𝑢 = 0} (𝑢 is a normal of 𝐿). 

Then: 𝑢 separates 𝑝 and 𝑞 iff 𝐿 separates 𝑝 and 𝑞 (i.e. 𝑝 and 𝑞 are in different sides of 𝐿). 

For a vector 𝑣 ∈ 𝑅ଶ, denote by 𝑎(𝑣) the angle between 𝑣 and the vector (1,0)். 

Denote by 𝑎(𝐿) the angle between 𝐿 and the vector (1,0)். 

W.l.o.g. assume 𝑎(𝑝) < 𝑎(𝑞). 

Then: 𝐿 separates 𝑝 and 𝑞 iff 𝑎(𝐿) ∈ [𝑎(𝑝), 𝑎(𝑞)]. 

By picking 𝑢 uniformly, 𝑎(𝐿) is picked uniformly from [0, 𝜋]. Therefore, the probability 
that 𝐿 separates 𝑝 and 𝑞 is: 



|  [𝑎(𝑝), 𝑎(𝑞)]  |
|  [0, 𝜋]  |

=
𝑎(𝑞) − 𝑎(𝑝)

𝜋
=
𝜃
𝜋

 

As required. 

 

Now, let's go on to the case 𝑑 > 2. 

Denote 𝑊 = 𝑠𝑝𝑎𝑛{𝑝, 𝑞}. Since 𝜃 ≠ 0, dim(𝑊) = 2. 

Denote 𝑊ୄ = {𝑥 ∈ 𝑅ௗ:    𝑥 ⊥ 𝑊}. 

Represent 𝑢 as 𝑢 = 𝑤 + 𝑤ୄ where 𝑤 ∈ 𝑊, 𝑤ୄ ∈ 𝑊ୄ. 

So we have that 𝑝 ⋅ 𝑢 = 𝑝 ⋅ 𝑤 and 𝑞 ⋅ 𝑢 = 𝑞 ⋅ 𝑤. 

Therefore: 𝑠𝑖𝑔𝑛(𝑝 ⋅ 𝑢) ≠ 𝑠𝑖𝑔𝑛(𝑞 ⋅ 𝑢) iff 𝑠𝑖𝑔𝑛(𝑝 ⋅ 𝑤) ≠ 𝑠𝑖𝑔𝑛(𝑞 ⋅ 𝑤). 

Let 𝐵 = {𝑏ଵ, 𝑏ଶ} be an orthonormal basis for 𝑊. 

Let 𝑝ᇱ, 𝑞ᇱ, 𝑤ᇱ ∈ 𝑅ଶ be the representations of 𝑝, 𝑞, 𝑤 in the basis 𝐵. 

Then: 

𝑠𝑖𝑔𝑛(𝑝 ⋅ 𝑤) = 𝑠𝑖𝑔𝑛(𝑝ᇱ ⋅ 𝑤ᇱ) = 𝑠𝑖𝑔𝑛 ቆ𝑝ᇱ ⋅
𝑤ᇱ

‖𝑤ᇱ‖ቇ 

𝑠𝑖𝑔𝑛(𝑞 ⋅ 𝑤) = 𝑠𝑖𝑔𝑛(𝑞ᇱ ⋅ 𝑤ᇱ) = 𝑠𝑖𝑔𝑛 ቆ𝑞ᇱ ⋅
𝑤ᇱ

‖𝑤ᇱ‖ቇ 

 

Notice that by picking 𝑢 randomly uniformly from the unit sphere in 𝑅ௗ, ௪ᇲ

‖௪ᇲ‖
 is picked 

randomly uniformly from the unit circle in 𝑅ଶ (actually 𝑤ᇱ might be 0 in case 𝑢 ∈ 𝑊ୄ, 
but this case can be neglected as it happens with probability 0, since dim(𝑊ୄ) < 𝑑). 

By the proof for the case 𝑑 = 2 we have that the probability that ௪ᇲ

‖௪ᇲ‖
  separates 𝑝 and 𝑞 

is:  ఏ
గ

. 

Therefore the probability that 𝑢  separates 𝑝 and 𝑞 is:  ఏ
గ

. 

∎ 
 

Now let's prove that 𝐻 is a (𝜃ଵ, (1 + 𝜀)𝜃ଵ, 1 −
ఏభ
గ
, 1 − (ଵାఌ)ఏభ

గ
) locally sensitive hash 

family: 

Let 𝑝, 𝑞 ∈ 𝑅ௗ. 

Let 𝜃 ∈ [0, 𝜋] be the angle between 𝑝 and 𝑞. 



Pick ℎ௨ ∈ 𝐻 randomly uniformly. 

Then actually 𝑢 is picked randomly uniformly from the unit sphere. 

Now: 

Pr൫ℎ௨(𝑝) = ℎ௨(𝑞)൯ = Pr(𝑢  doesn′t  separate  𝑝  𝑎𝑛𝑑  𝑞) = [𝑏𝑦  𝑐𝑙𝑎𝑖𝑚  1] = 1 −
𝜃
𝜋

 

If 𝜃 ≤ 𝜃ଵ then: 

Pr൫ℎ௨(𝑝) = ℎ௨(𝑞)൯ = 1 −
𝜃
𝜋
≥ 1 −

𝜃ଵ
𝜋

 

If 𝜃 ≥ (1 + 𝜀)𝜃ଵ then: 

Pr൫ℎ௨(𝑝) = ℎ௨(𝑞)൯ = 1 −
𝜃
𝜋
≤ 1 −

(1 + 𝜀)𝜃ଵ
𝜋

 

As required. 

 

Part b 

Given 𝑘 unit vectors 𝑢ଵ,… , 𝑢௞ ∈ 𝑅ௗ, define a hash function ℎ௨భ,…,௨ೖ: 𝑅
ௗ → {0,1}௞ by: 

ℎ௨భ,…,௨ೖ(𝑝) = ቀℎ௨భ(𝑝), … , ℎ௨ೖ(𝑝)ቁ 

Define the following hash family 𝐻௞: 

𝐻௞ = {ℎ௨భ,…,௨ೖ ∶      ∀𝑗    𝑢௝ ∈ 𝑅ௗ, ฮ𝑢௝ฮ = 1} 

Let's prove that 𝐻௞ is a ൬𝜃ଵ, (1 + 𝜀)𝜃ଵ, ቀ1 −
ఏభ
గ
ቁ
௞
, ቀ1 − (ଵାఌ)ఏభ

గ
ቁ
௞
൰ locally sensitive hash 

family: 

Let 𝑝, 𝑞 ∈ 𝑅ௗ. 

Let 𝜃 ∈ [0, 𝜋] be the angle between 𝑝 and 𝑞. 

Pick ℎ௨భ,…,௨ೖ ∈ 𝐻௞ randomly uniformly. 

Then: 

Pr ቀℎ௨భ,…,௨ೖ(𝑝) = ℎ௨భ,…,௨ೖ(𝑞)ቁ = Pr ቀℎ௨ೕ(𝑝) = ℎ௨ೕ(𝑞)    ∀𝑗 = 1,… , 𝑘ቁ = ൬1 −
𝜃
𝜋
൰
௞

 

If 𝜃 ≤ 𝜃ଵ then: 

Pr ቀℎ௨భ,…,௨ೖ(𝑝) = ℎ௨భ,…,௨ೖ(𝑞)ቁ = ൬1 −
𝜃
𝜋
൰
௞

≥ ൬1 −
𝜃ଵ
𝜋
൰
௞

 

If 𝜃 ≥ (1 + 𝜀)𝜃ଵ then: 

Pr ቀℎ௨భ,…,௨ೖ(𝑝) = ℎ௨భ,…,௨ೖ(𝑞)ቁ = ൬1 −
𝜃
𝜋
൰
௞

≤ ቆ1 −
(1 + 𝜀)𝜃ଵ

𝜋 ቇ
௞

 



As required. 

 

Part c 

Denote: 

x 𝑝ଵ = 1 − ఏభ
గ

  

x 𝑝ଶ = 1 − (ଵାఌ)ఏభ
గ

  

x 𝜌 =
୪୬ቀ భ

೛భ
ቁ

୪୬ቀ భ
೛మ
ቁ
 

For all 𝑥, 𝑦 ∈ 𝑅ௗ denote the angle between them by: 

𝑑𝑖𝑠𝑡(𝑥, 𝑦) = cosିଵ ൬
𝑥 ⋅ 𝑦

‖𝑥‖‖𝑦‖
൰ 

Let's define the following algorithm: 

Let 𝑘 = logଵ
௣ଶൗ (𝑛) 

Let 𝑐ଵ = 6 

Let 𝐿 = ௖భ
௣భ
ೖ 

Notice that: 

𝐿 =
𝑐ଵ
𝑝ଵ௞

= 𝑐ଵ ൬
1
𝑝ଵ
൰
୪୭୥భ

೛మൗ (௡)

= 𝑐ଵ ൬
1
𝑝ଵ
൰

୪୭୥ భ
೛భ
(௡)

୪୭୥ భ
೛భ

ቀ ଵ௣మ
ቁ
  

= 𝑐ଵ𝑛

ଵ
୪୭୥ భ

೛భ
ቀ ଵ௣మ

ቁ
  

= 𝑐ଵ𝑛

୪୬ቀ ଵ௣భ
ቁ

୪୬ቀ ଵ௣మ
ቁ = 𝑐ଵ𝑛ఘ 

We will use 𝐿 hash tables 𝑇ଵ,… , 𝑇௅. Each hash table 𝑇௜ will use hash function ℎ௜ from the 
family 𝐻௞ (which I defined in part b), which is a ൫𝜃ଵ, (1 + 𝜀)𝜃ଵ, 𝑝ଵ௞,   𝑝ଶ௞൯ locally sensitive 
hash family. 

 

Preprocessing: 

1. For  𝑖 = 1,… , 𝐿 
a. For  𝑗 = 1,… , 𝑛 

i. Insert 𝑥௝ to 𝑇௜, to the bucket specified by ℎ௜(𝑥௝). 

 

Query: 

Given a query 𝑞 ∈ 𝑅ௗ, we will do the following: 

1. For 𝑖 = 1,… , 𝐿 



a. Look at the bucket specified by ℎ௜(𝑞). Scan all vectors (unless we reach 
the limit described below) in this bucket. If we find there a vector 𝑥 such 
that 𝑑𝑖𝑠𝑡(𝑥, 𝑞) ≤ (1 + 𝜀)𝜃ଵ, we stop and return 𝑥. 

We will limit the algorithm to check up to total of 𝑐ଶ𝑛ఘ vectors, where 𝑐ଶ = 1200. If we 
reach that limit, we stop and return that no appropriate vector was found. 

 

Part d 

Denote 𝑆 = {𝑥ଵ, … , 𝑥௡}. 

Let 𝑞 ∈ 𝑅ௗ be a query, and assume that ∃𝑥 ∈ 𝑆    𝑑𝑖𝑠𝑡(𝑥, 𝑞) ≤ 𝜃ଵ. 

We need to prove that with probability at least 0.99, the algorithm will return some 
𝑦 ∈ 𝑆 such that 𝑑𝑖𝑠𝑡(𝑦, 𝑞) ≤ (1 + 𝜀)𝜃ଵ. 

First, notice that: 

𝑝ଶ௞ = 𝑝ଶ
୪୭୥భ/೛మ  (௡) = ൬

1
𝑝ଶ
൰
ି୪୭୥భ/೛మ  (௡)

=
1
𝑛

 

Denote by 𝐸ଵ the event that 𝑥 will be mapped to the same bucket as 𝑞 in at least one 
hash table, i.e. the event that ∃𝑖  ℎ௜(𝑥) = ℎ௜(𝑞). 

For each 𝑖, Pr( ℎ௜(𝑥) ≠ ℎ௜(𝑞)) ≤ 1 − 𝑝ଵ௞  . 

Therefore: Pr(¬𝐸ଵ) ≤ ൫1 − 𝑝ଵ௞൯
௅ = ൫1 − 𝑝ଵ௞൯

೎భ
೛భ
ೖ ≤ ቀଵ

௘
ቁ
௖భ
= ቀଵ

௘
ቁ
଺
< ଵ

ଶ଴଴
. 

Now, denote by 𝐹 the number of false positives, i.e. the number of times that a vector 
𝑧 ∈ 𝑆 such that 𝑑𝑖𝑠𝑡(𝑧, 𝑞) > (1 + 𝜀)𝜃ଵ was mapped to the same bucket as 𝑞. 

Let's bound 𝐸(𝐹). 

For a vector 𝑧 ∈ 𝑆 which is "far" from 𝑞, i.e. 𝑑𝑖𝑠𝑡(𝑧, 𝑞) > (1 + 𝜀)𝜃ଵ, the expected number 
of times that 𝑧 and 𝑞 are mapped to the same bucket is at most: 

𝐿 ⋅ 𝑝ଶ௞ = 𝑐ଵ𝑛ఘ ⋅
ଵ
௡
= 𝑐ଵ𝑛ఘିଵ . 

In the worst case all 𝑛 vectors are "far" from 𝑞, therefore we can bound 𝐸(𝐹) by: 

𝐸(𝐹) ≤ 𝑛 ⋅ 𝑐ଵ𝑛ఘିଵ = 𝑐ଵ𝑛ఘ 

Denote by 𝐸ଶ the event that 𝐹 ≤ 𝑐ଶ𝑛ఘ. 

Then: 

Pr(¬𝐸ଶ) = Pr(𝐹 > 𝑐ଶ𝑛ఘ) ≤ [Markov] ≤
𝐸(𝐹)
𝑐ଶ𝑛ఘ

≤
𝑐ଵ𝑛ఘ

𝑐ଶ𝑛ఘ
=

6
1200

=
1
200

 

 



Notice that if both 𝐸ଵ and 𝐸ଶ occur, then the algorithm succeeds: 𝐸ଵ ensures that at least 
one "good" vector is in some bucket. And 𝐸ଶ ensures that the number of false positives is 
not large enough to prevent the algorithm from finding a "good" vector. 

What is the probability that both 𝐸ଵ and 𝐸ଶ occur? 

Pr(¬𝐸ଵ ∨ ¬𝐸ଶ) ≤ Pr(¬𝐸ଵ) + Pr(¬𝐸ଶ) ≤
1
200

+
1
200

= 0.01 

Therefore: 

Pr(𝐸ଵ ∧ 𝐸ଶ) ≥ 1 − 0.01 = 0.99 
 

Therefore, the probability that the algorithm succeeds to return a "good" vector is at 
least 0.99, as required. 

 

Let's now analyze the query time complexity. 

We have to compute ℎଵ(𝑞),… , ℎ௅(𝑞). Each ℎ௜ is composed of 𝑘 "atomic" hash functions. 
Calculating each "atomic" hash ℎ௨(𝑞) is 𝑂(𝑑) (need to compute 𝑢 ⋅ 𝑞). Therefore the 
total cost is 𝑂(𝐿 ⋅ 𝑘 ⋅ 𝑑) = 𝑂൫𝑑𝑛ఘ logଵ/௣మ  (𝑛)൯  operations. 

In addition, we go over at most 𝑐ଶ𝑛ఘ vectors and compute the angle between 𝑞 and each 
of them. Computing the angle between 2 vectors is 𝑂(𝑑), therefore the total cost of 
angles calculations is:  𝑂(𝑑𝑛ఘ). 

So the total query time is: 

𝑂൫𝑑𝑛ఘ logଵ/௣మ  (𝑛) + 𝑑𝑛ఘ൯ = 𝑂൫𝑑𝑛ఘ logଵ/௣మ  (𝑛)൯ 

Regarding space complexity: 

We have 𝐿 hash tables, each containing 𝑛 vectors. Actually we can store in the hash 
tables only the indices of the vectors rather than the vectors themselves, so the space 
needed for this is 𝑂(𝑛𝐿) = 𝑂(𝑛 ⋅ 𝑛ఘ) = 𝑂(𝑛ଵାఘ). 

In addition, we have 𝐿 ⋅ 𝑘 "atomic" hash functions, each is represented by a vector in 𝑅ௗ. 
The space needed for this is 𝑂(𝐿 ⋅ 𝑘 ⋅ 𝑑) = 𝑂൫𝑑𝑛ఘ logଵ/௣మ  (𝑛)൯. 

So the total space is: 

𝑂൫𝑛ଵାఘ + 𝑑𝑛ఘ logଵ/௣మ  (𝑛)൯ ≤ 𝑂(𝑑𝑛ଵାఘ) 

 

What can we say about 𝜌? 



𝜌 =
ln ቀ 1𝑝ଵ

ቁ

ln ቀ 1𝑝ଶ
ቁ
=
ln(𝑝ଵ)
ln(𝑝ଶ)

=
ln ቀ1 − 𝜃ଵ

𝜋 ቁ

ln ൬1 − (1 + 𝜀)𝜃ଵ
𝜋 ൰

≈
1

1 + 𝜀
 

Therefore, we get that space complexity is: 

𝑂 ൬𝑑𝑛ଵା
ଵ

ଵାఌ൰ 

And time complexity is: 

𝑂 ൬𝑑𝑛
ଵ

ଵାఌ logଵ/௣మ  (𝑛)൰ 

In class we neglected the logarithmic factor. If we do the same here, we get: 

𝑂 ൬𝑑𝑛
ଵ

ଵାఌ൰ 

 

  



Question 3 

Let 𝑥 ∈ 𝑅ௗ. 

Let 𝜀, 𝛿 > 0. 

Let = ଶ
ఌమఋ

 . 

We saw in class that if we pick 𝑘 hash functions ℎଵ,… , ℎ௞: {1,… , 𝑑} → {−1,1} from a 4-
wise independent hash family, and define a matrix 𝑀 ∈ 𝑅௞×ௗ by 𝑀௜௝ = ℎ௜(𝑗), then we 
have: 

Pr ൬ฬ
1
𝑘
‖𝑀𝑥‖ଶ − ‖𝑥‖ଶฬ ≥ 𝜀‖𝑥‖ଶ൰ ≤ 𝛿 

In our case 𝑑 = 𝑛ଶ and we have 𝑛 vectors 𝑥ଵ,… , 𝑥௡ ∈ 𝑅ௗ. 

Let's choose = ଵ
௡

 , then we get 𝑘 = ଶ௡
ఌమ

 . 

Define 𝑓: 𝑅ௗ → 𝑅௞ by: 𝑓(𝑥) = ଵ
√௞
𝑀𝑥. 

Denote 𝑦௜ = 𝑓(𝑥௜). 

Let 𝑖 ∈ {1,… , 𝑛}. Then we have: 

Pr(|‖𝑦௜‖ଶ − ‖𝑥௜‖ଶ| ≥ 𝜀‖𝑥௜‖ଶ) ≤
1
𝑛

 

Therefore: 

Pr(|‖𝑦௜‖ଶ − ‖𝑥௜‖ଶ| < 𝜀‖𝑥௜‖ଶ) ≥ 1 −
1
𝑛

 

If we want to "succeed" with all 𝑛 vectors, we get: 

Pr(∀𝑖    |‖𝑦௜‖ଶ − ‖𝑥௜‖ଶ| < 𝜀‖𝑥௜‖ଶ) ≥ ൬1 −
1
𝑛
൰
௡

 

The value ቀ1 − ଵ
௡
ቁ
௡

 approaches ଵ
௘
 as 𝑛 grows, but it is less than ଵ

௘
 (which is the required 

bound). After consulting Prof. Kaplan, he approved that it is okay to use the bound 

ቀ1 − ଵ
௡
ቁ
௡

. 

So we got that: 

Pr(∀𝑖    (1 − 𝜀)‖𝑥௜‖ଶ ≤ ‖𝑦௜‖ଶ ≤ (1 + 𝜀)‖𝑥௜‖ଶ) ≥ ൬1 −
1
𝑛
൰
௡
≈
1
𝑒

 

As required. 

How much space do we need in order to represent the matrix 𝑀? 



We actually need to represent 𝑘 = ଶ௡
ఌమ

 hash functions. 

As we saw in class, each hash function is of the form 

2൫(𝑎ଷ𝑥ଷ + 𝑎ଶ𝑥ଶ + 𝑎ଵ𝑥 + 𝑎଴)  𝑚𝑜𝑑  𝑇  𝑚𝑜𝑑  2൯ − 1 

Where 𝑇 is a prime number between 𝑑 and 2𝑑 and 𝑎ଷ,… , 𝑎଴ ∈ {0,1,… , 𝑇 − 1}. 

Since each hash function can be represented by 4 numbers, we can represent the matrix 
𝑀 by 𝑂(𝑘) = 𝑂 ቀଶ௡

ఌమ
ቁ numbers. 

Notice that each of these numbers (and also 𝑇) is smaller than 2𝑑 = 2𝑛ଶ, hence each 
number can be represented by 𝑂(log 𝑛) bits. I assume we are supposed to neglect this 
logarithmic factor. 

  



Question 4 

Part a 

First, note that if 𝑢, 𝑣 ∈ 𝑅ௗ are unit vectors, then: 

𝑢 ⋅ 𝑣 = ‖𝑢‖ ⋅ ‖𝑣‖ ⋅ cos൫𝜃(𝑢, 𝑣)൯ = 1 ⋅ 1 ⋅ cos൫𝜃(𝑢, 𝑣)൯ = cos൫𝜃(𝑢, 𝑣)൯ 

Therefore: 

(1)              (𝑢 ⋅ 𝑣)ଶ = cosଶ൫𝜃(𝑢, 𝑣)൯        ∀𝑢, 𝑣 ∈ 𝑆ௗିଵ 

Now, let 𝑐 ≥ 1. 

Let 𝑖, 𝑗 ∈ {1,… , 𝑛}. 

Denote 𝑒ଵ = (1,0,0, … ,0)் ∈ 𝑅ௗ. 

Let 𝐴 ∈ 𝑅ௗ×ௗ be a rotation matrix such that 𝐴𝑥௜ = 𝑒ଵ. 

Denote 𝑤 = 𝐴𝑥௝ . 

Since 𝐴 is a rotation matrix, it preserves angles, i.e.: 

𝜃൫𝑥௜, 𝑥௝൯ = 𝜃(𝑒ଵ,𝑤) 

⇒     cosଶ ቀ𝜃൫𝑥௜, 𝑥௝൯ቁ = cosଶ൫𝜃(𝑒ଵ,𝑤)൯ 

Since 𝑒ଵ, 𝑤 ∈ 𝑆ௗିଵ, we get by (1) that: 

cosଶ ቀ𝜃൫𝑥௜, 𝑥௝൯ቁ = (𝑒ଵ ⋅ 𝑤)ଶ 

On the other hand: 

𝑒ଵ ⋅ 𝑤 = 𝑤ଵ 

Where 𝑤ଵ is the first coordinate of 𝑤. 

Therefore: 

(2)      cosଶ ቀ𝜃൫𝑥௜, 𝑥௝൯ቁ = 𝑤ଵ
ଶ 

Note that 𝑤 is actually a random unit vector drawn uniformly from the unit sphere. 

Let 𝑡 ∈ (1, 𝑑). Using the inequality we saw in class, we have that: 

Pr ൬𝑤ଵ
ଶ >

𝑡
𝑑
൰ < 𝑒ି

௧(ௗିଵ)
ଶௗ  

(in class we used 𝑡 = 1 + 𝜀). 

Substituting (2) we get: 



Pr ൬cosଶ ቀ𝜃൫𝑥௜, 𝑥௝൯ቁ >
𝑡
𝑑
൰ < 𝑒ି

௧(ௗିଵ)
ଶௗ ≤ [𝑓𝑜𝑟  𝑑 ≥ 2] ≤ 𝑒ି

௧⋅ௗ ଶ⁄
ଶௗ = 𝑒ି

௧
ସ 

 

This is true for a single pair 𝑖, 𝑗. 

If we consider all pairs, we get (using the union bound): 

(3)        Pr ൬∃i, j      cosଶ ቀ𝜃൫𝑥௜, 𝑥௝൯ቁ >
𝑡
𝑑
൰ < ቀ𝑛2ቁ𝑒

ି௧ସ <
𝑛ଶ

2
𝑒ି

௧
ସ 

We want that: 

𝑛ଶ

2
𝑒ି

௧
ସ ≤

1
𝑛௖

 

⇒       𝑒ି
௧
ସ ≤ 2𝑛ି(௖ାଶ) 

⇒    −
𝑡
4
≤ log 2 − (𝑐 + 2) log 𝑛 

⇒       𝑡 ≥ −4 log 2 + 4(𝑐 + 2) log 𝑛 

Choose 𝑡 = 4(𝑐 + 2) log 𝑛. Then we have: 

Pr ቆ∃i, j      cosଶ ቀ𝜃൫𝑥௜, 𝑥௝൯ቁ >
4(𝑐 + 2) log 𝑛

𝑑 ቇ ≤
1
𝑛௖

 

Denote 𝑐ᇱ = 4(𝑐 + 2). Then: 

Pr ቆ∀i, j      cosଶ ቀ𝜃൫𝑥௜, 𝑥௝൯ቁ ≤
𝑐ᇱ log 𝑛

𝑑 ቇ ≥ 1 −
1
𝑛௖

 

As required. 

 

Part b 

Let 𝑐 be a large number. 

By part a, we get that with probability at least 1 − ଵ
௡೎

  we have that: 

∀i, j      cosଶ ቀ𝜃൫𝑥௜, 𝑥௝൯ቁ ≤
4(𝑐 + 2) log 𝑛

𝑑
 

 
ସ(௖ାଶ) ୪୭୥௡

ௗ
 is almost 0 because 𝑑 ≫ log𝑛. 

Therefore cosଶ ቀ𝜃൫𝑥௜, 𝑥௝൯ቁ = ൫𝑥௜ ⋅ 𝑥௝൯
ଶ is almost 0 for all 𝑖, 𝑗.  

Therefore ൫𝑥௜ ⋅ 𝑥௝൯ is very close to 0 for all 𝑖, 𝑗. 



This means that with high probability 1 − ଵ
௡೎

 we have that 𝑥௜, 𝑥௝  are almost orthogonal 
for all 𝑖, 𝑗. 

 


