Polylog-time and near-linear work
approximation scheme
for undirected shortest paths

Edith Cohen
AT&T Bell Labs

Shortest-path problem

Network G = (V, E), positive weights w : E — R
o Find minimum-weight paths between:

e designated source node to all other nodes
e all pairs

e specified pairs of nodes
4

Parallel shortest-paths algorithms

“Transitive-Closure Bottleneck”

s sources, n nodes, m edges

C*

O(t)

Algorithm time work=timexproc.
Dijkstra O(n) O(sm)
Johnson 6(71) O(nm)
Floyd-Warshall |polylog(n)|O(n3)
Klein-Sairam** | polylog(n)|O(sm?) (R)

work /time tradeoffs:
Spencer* (5(15) (5(3(713/152 +m))
Klein-Sairam™*** 6(710'5) (5(mn0°5) (s = n0°5)

(5(3712 —|—n3/t2)

* if max.ep w(e)/ min.ecgw(e) = O(poly n).

otherwise, (1 + 1/ poly(n))-approximation

% positive integral polynomial weights

* % % (1 4 1/ polylogn)-approximation, randomized

Problem:

more work.

Faster algorithms perform much

New parallel shortest paths algorithms
for
weighted undirected networks:

(randomized algorithm)

For any fixed integer k£ and ¢; > O:

Paths within (14+0(1/log” n)) of shortest, from
s sources to all other nodes are computed in:
o polylog time using

o O(mn + s(m + n1+€0)) work

Improvements:

e Previous polylog-time algorithms require
min{()(n3), 6(3m2)} work.

e Previous near-linear work algorithms require
near-O(n) time.

e Best-known sequential time is O(sm).

Faster sequential shortest paths

Paths from s source nodes to all other nodes:
e Upper bound O(sm) (Dijkstra)

e Lower bound O(m + sn)

o stretch-t paths (< txshortest):
ABCP (5(mn64/t + 3n1+32/t)

C (’j(mn(Q—l—e)/t _|_3n1—|—(2—|—6)/t)

New Algorithm: For any fixed ¢; > O:
In O((m 4+ sn)n0) time computes paths s.t.:

e Nearby (O(wmaxpolylogn)) pairs of nodes:
weight O(wmax polylogn)

e Distant (2(wmax polylogn)) pairs of nodes:
paths within (1 4+ 1/ polylogn) of shortest.

(Wmax — maximum edge-weight)

randomized polylog time

o1 llel:
T parate O((m + sn)neo) work

Outline

e Main result:
Parallel shortest paths algorithm

e Another result:
Near-optimal sequential algorithm for
“distant” pairs of nodes

e HopSets and their use for parallel shortest
paths computations

e Flavor of our HopSet constructions

e Open problems

“Reduction” to d-edge shortest paths

d-edge shortest paths are minimum weight
paths among paths containing at most d edges.

In parallel, d-edge SP’s can be computed in:
O(d) time using

e O(mds) work (parallel Bellman-Ford)

o for (1 + 1/polylogn)-approximation:

~

O(ms) work (Klein-Sairam)

Idea: We compute a sparse collection of new
edges E* (HopSet) such that (polylogn)-edge
distances in EuU E* are within (1+¢) of original
distances.

(d,e)- HopSet

Network G = (V, E), integer d > 1, scalar ¢ > 0

A (d,e)- HopSet of G is a set E* of weighted
edges such that:

1. diStEUE*(uLuQ) = diS’GE(ul,UQ)

2. dist b pe(ug, ug) < (14 e)dist p(ug, us)

Good HopSets

We want:

1. A sparse hopset (close to O(m) edges)
2. Small diameter (d = O(polylogn))

3. Good approximation (e < 1%)

e The existence of hopsets with some specified
attributes is of independent interest.

e We also want efficient constructions.

Our HopSets

For any fixed integer £ and ¢y > 0:
size e (approx.) |d (diameter)

O(nl+0) 0(1/log" n) | polylogn

o In: O(mn0) time
o In: polylog time using O(mn0) work

Outline:
Flavor of our HopSet constructions

e Review of “pairwise covers”
(used in our HopSets constructions)

e A simple, sequential, construction of
(O(e~Llogn),e)-HopSets of size (3(714/3)
In time: 6(mn2/3)

Sketch of further ideas:

e Sequential constructions of sparser HopSets,
faster

e Parallel HopSet constructions:
The parallel cover constructions of [C93] are
instrumental.
o using limited covers to obtain limited
HopSets
o using limited HopSets to obtain HopSets

Pairwise covers
Network with weights w: F — R4, scalar W > 1

o A W-cover of G is a collection of:

o subsets of nodes Xy,..., X}, (clusters), and
o nodes vq,...,v;, where v; € X; (centers)
such that:

1. For every path p such that w(p) < W,
3 such that p C X;

2.Vi, ¥V ue X;, dist{v;,u} < WTlogn]

3.5, |X;| = O(n).

4.7 |ENX; x X;| = O(m).

Complexity:

e Sequentially: O(m) time [ABCP93] [C93]

o In parallel: (¢-limited covers)
O(¢) expected time O(m) work [C93]

10

Example: 1-cover

3 clusters: Xy, Xy, X3, W =1, radius = 2

n=12, m =16

11

Simple HopSet algorithm

o In time: O(mn2/3)
e Computes (O(e1logn),e)-HopSet
o of size O(nd/3).

Algorithm: HopSet for distances in [R,2R]:

1.W = eR/(4[logn]). Construct a W-cover y.
Big clusters: X € y such that |X| > nl/3
Small clusters: X € x such that |X| < nl/3

2. For each small cluster:
a complete set of edges

3. For each big cluster:
star graph rooted at the center

4. Complete graph on centers of big clusters

The assigned edge weights are the distances.

12

Hop edges

9p}
—
QO
—
7]
)
o
O
X))
o p—
M

Small Clusters

13

Size of the HopSet

We bound the number of hop edges produced.

e Complete graphs on small clusters:
For each small cluster X, O(|X|?) edges.
We have |X| < nl/3 and sxey X = O(n).
Hence,

X 1s small

e Star graphs on big clusters: O(n)

e Complete graph on centers of big clusters:
There are O(n2/3) big clusters. Hence:
5(n4/3)

Total number of hop edges: (5(714/3)

14

Correctness

We show that the algorithm produces a
(O(e~Llogn),e)-HopSet.
Consider a path of weight in [R,2R].

W = eR/(4[logn]).
IR.2R]

—_— —_— —_— —_— —_—
_ - _ >
< < < A 7 > = 2
. <. e T i

R Wt

Center Center

Size of the path is O(R/W) = O(¢~1logn)
Weight 1s larger by at most 4W[logn] < eR

15

Computing better HopSets

To produce sparser HopSets (size O(nlt€0))
more efficiently (time O(mnf0)) we use recursive
version of the algorithm.

Sketch:

Big Clusters: size > nl—€0
Small clusters: size < nl—€0

e Big clusters are treated the same.

e For small clusters, instead of a complete
graph (and all-pairs shortest paths computa-
tions), we apply the algorithm recursively.

16

Computing HopSets in parallel

e limited covers can be computed efficiently
in parallel [C]

e using limited covers in the HopSet algorithm
produces limited HopSets

e HopSets can be obtained by applying
O(logn) times a limited HopSet algorithm

17

(-limited covers in parallel

Network G = (V, F) with weights w: E — R,
a scalar W > 1, an integer ¢ > 1

o An (-limited W-cover of G is a collection of:
o subsets of nodes Xj,..., X}, (clusters), and

o nodes vq,...,v;, where v; € X; (centers)

such that:

1. Every path p such that |p| < ¢ and w(p) < W,
3 such that p C X;

2.Vi, ¥V ue X;, dist{v;,u} < WTlogn]
4.5;|[EN X7 = O(m).

Complexity: O(¢) expected time O(m) work
[C93]

18

(-limited (d,¢)- HopSet

Integers ¢, d, scalar ¢ > 0
An ¢-limited (d,¢)- HopSet of G = (V, E) is a set
E* of weighted edges such that:

1. diStEuE*(ul,uQ) = distE(ul,uQ)

2. dist b pe(ug,ug) < (14 e)diste(ug, us)

e The algorithm is such that d is independent
of our choice of .

e The running time is linear in /.

We will use ¢ = 2d

19

HopSets in parallel

Consider a weighted network (V, F)

o« 2d, E** =1

ekFori=1,... logn:

1. Compute (-limited (d,¢)-HopSet E* for
(V, Eu E**)
2. B** «— E** U E*

Correctness:

After iteration i, E** constitutes:

a 2'd-limited (d,¢;)-HopSet of (V, E),
where (1 -+ ei) = (1 -+ e)i.

We choose ¢ << 1/log?n hence ¢; = O(1/logn).

20

Open Problems

e Overcoming the transitive closure bottleneck
for directed networks

e Existence of sparse HopSets for:
o exact distances?
o directed networks?

e Better sequential ((1 + ¢)-approx) shortest
paths:
Upper bound: O(sm) for s sources
Lower bound: O(m + sn) for s sources

21

