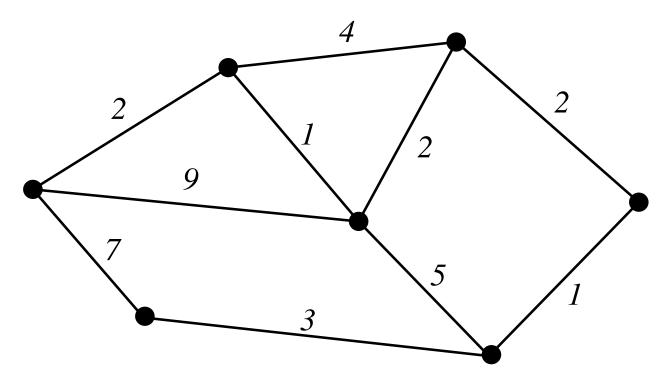
Polylog-time and near-linear work approximation scheme for undirected shortest paths

Edith Cohen AT&T Bell Labs

Shortest-path problem

Network G = (V, E), positive weights $w : E \to R_+$ \diamond Find minimum-weight paths between:

- designated source node to all other nodes
- all pairs
- specified pairs of nodes



Parallel shortest-paths algorithms "Transitive-Closure Bottleneck"

s sources, n nodes, m edges

Algorithm	time	work=time×proc.	
Dijkstra	$\widetilde{O}(n)$	$\widetilde{O}(sm)$	
Johnson	$ \widetilde{O}(n) $	O(nm)	
Floyd-Warshall	polylog(n)	$\tilde{O}(n^3)$	
Klein-Sairam**	$\operatorname{polylog}(n)$	$ \tilde{O}(sm^2) $ (R)	
work/time tradeoffs:			
Spencer*	$\widetilde{O}(t)$	$\tilde{O}(s(n^3/t^2+m))$	
Klein-Sairam***	$\tilde{O}(n^{0.5})$	$\left \tilde{O}(mn^{0.5}) \right (s = n^{0.5}) \right $	
C^*	$\widetilde{O}(t)$	$\tilde{O}(sn^2 + n^3/t^2)$	

```
* if \max_{e \in E} w(e) / \min_{e \in E} w(e) = O(\text{poly } n).
```

otherwise, $(1 + 1/\operatorname{poly}(n))$ -approximation

** positive integral polynomial weights

 $***(1+1/\operatorname{polylog} n)$ -approximation, randomized

Problem: Faster algorithms perform much more work.

New parallel shortest paths algorithms for weighted undirected networks:

(randomized algorithm)

For any fixed integer k and $\epsilon_0 > 0$:

Paths within $(1+O(1/\log^k n))$ of shortest, from

s sources to all other nodes are computed in:

polylog time using

 $\diamond O(mn^{\epsilon_0} + s(m + n^{1+\epsilon_0}))$ work

Improvements:

- Previous polylog-time algorithms require $\min\{O(n^3), \tilde{O}(sm^2)\}$ work.
- Previous near-linear work algorithms require near-O(n) time.
- Best-known sequential time is $\tilde{O}(sm)$.

Faster sequential shortest paths

Paths from s source nodes to all other nodes:

- Upper bound $\tilde{O}(sm)$ (Dijkstra)
- Lower bound O(m+sn)
- stretch-t paths ($\leq t \times \text{shortest}$):

ABCP
$$\tilde{O}(mn^{64/t} + sn^{1+32/t})$$

C $\tilde{O}(mn^{(2+\epsilon)/t} + sn^{1+(2+\epsilon)/t})$

New Algorithm: For any fixed $\epsilon_0 > 0$: In $O((m+sn)n^{\epsilon_0})$ time computes paths s.t.:

- Nearby $(O(w_{\max} \operatorname{polylog} n))$ pairs of nodes: weight $O(w_{\max} \operatorname{polylog} n)$
- **Distant** $(\Omega(w_{\max} \operatorname{polylog} n))$ pairs of nodes: paths within $(1 + 1/\operatorname{polylog} n)$ of shortest.

 $(w_{\text{max}} - \text{maximum edge-weight})$

• In parallel:

randomized polylog time $O((m+sn)n^{\epsilon_0})$ work

Outline

• Main result:

Parallel shortest paths algorithm

• Another result:

Near-optimal sequential algorithm for "distant" pairs of nodes

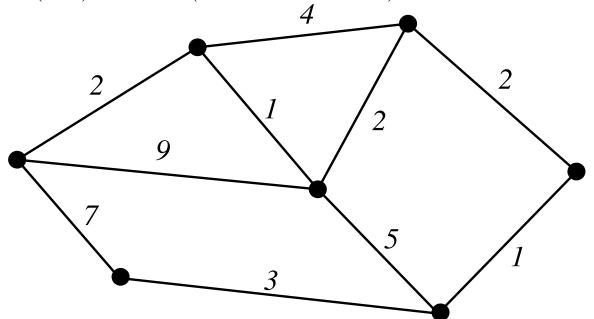
- **HopSets** and their use for parallel shortest paths computations
- Flavor of our HopSet constructions
- Open problems

"Reduction" to d-edge shortest paths
d-edge shortest paths are minimum weight
paths among paths containing at most d edges.

In parallel, d-edge SP's can be computed in: $\tilde{O}(d)$ time using

- O(mds) work (parallel Bellman-Ford)
- for $(1 + 1/\operatorname{polylog} n)$ -approximation:

 $\tilde{O}(ms)$ work (Klein-Sairam)



Idea: We compute a sparse collection of new edges E^* (HopSet) such that (polylog n)-edge distances in $E \cup E^*$ are within $(1 + \epsilon)$ of original distances.

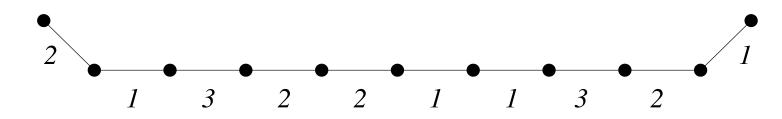
(d, ϵ) - **HopSet**

Network G = (V, E), integer $d \ge 1$, scalar $\epsilon > 0$

A (d, ϵ) - HopSet of G is a set E^* of weighted edges such that:

1.
$$\operatorname{dist}_{E \cup E^*}(u_1, u_2) = \operatorname{dist}_E(u_1, u_2)$$

2.
$$\operatorname{dist}_{E \cup E^*}^d(u_1, u_2) \le (1 + \epsilon) \operatorname{dist}_E(u_1, u_2)$$



Good HopSets

We want:

- 1. A sparse hopset (close to O(m) edges)
- 2. Small diameter (d = O(polylog n))
- 3. Good approximation ($\epsilon \leq 1\%$)
- The **existence** of hopsets with some specified attributes is of independent interest.
- We also want **efficient** constructions.

Our HopSets

For any fixed integer k and $\epsilon_0 > 0$:

size	ϵ (approx.)	d (diameter)
$O(n^{1+\epsilon_0})$	$O(1/\log^k n)$	polylog n

 \diamond In: $O(mn^{\epsilon_0})$ time

 \diamond In: polylog time using $O(mn^{\epsilon_0})$ work

Outline: Flavor of our HopSet constructions

- Review of "pairwise covers" (used in our HopSets constructions)
- A simple, sequential, construction of $(O(\epsilon^{-1}\log n), \epsilon)$ -HopSets of size $\tilde{O}(n^{4/3})$ In time: $\tilde{O}(mn^{2/3})$

Sketch of further ideas:

- Sequential constructions of sparser HopSets, faster
- Parallel HopSet constructions:

 The parallel cover constructions of [C93] are instrumental.
 - v using limited covers to obtain limited HopSets
 - using limited HopSets to obtain HopSets

Pairwise covers

Network with weights $w: E \to \mathcal{R}_+$, scalar $W \ge 1$

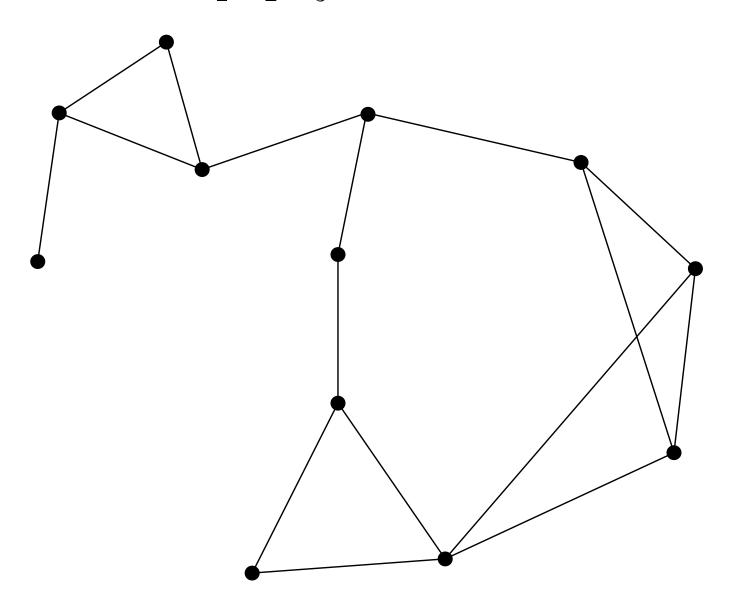
- \diamond A W-cover of G is a collection of:
- subsets of nodes X_1, \ldots, X_k (clusters), and
- nodes v_1, \ldots, v_k where $v_i \in X_i$ (centers) such that:
- 1. For every path p such that $w(p) \leq W$, $\exists i \text{ such that } p \subset X_i$
- $2. \forall i, \forall u \in X_i, \operatorname{dist}\{v_i, u\} \leq W \lceil \log n \rceil$
- $3. \, \Sigma_i |X_i| = \tilde{O}(n).$
- $4. \Sigma_i |E \cap X_i \times X_i| = \tilde{O}(m).$

Complexity:

- Sequentially: $\tilde{O}(m)$ time [ABCP93] [C93]
- In parallel: (\ell-limited covers)
- $\tilde{O}(\ell)$ expected time $\tilde{O}(m)$ work [C93]

Example: 1-cover

3 clusters: $X_1, X_2, X_3, W = 1$, radius = 2



$$n = 12, m = 16$$

 $\Sigma_i |X_i| = 5 + 4 + 7 = 16, \Sigma_i |E \cap X_i \times X_i| = 17$

Simple HopSet algorithm

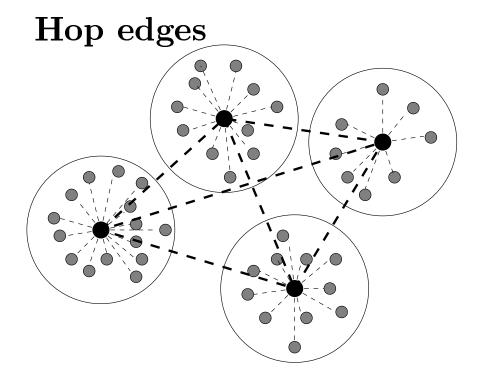
- In time: $\tilde{O}(mn^{2/3})$
- Computes $(O(\epsilon^{-1}\log n), \epsilon)$ -HopSet
- of size $\tilde{O}(n^{4/3})$.

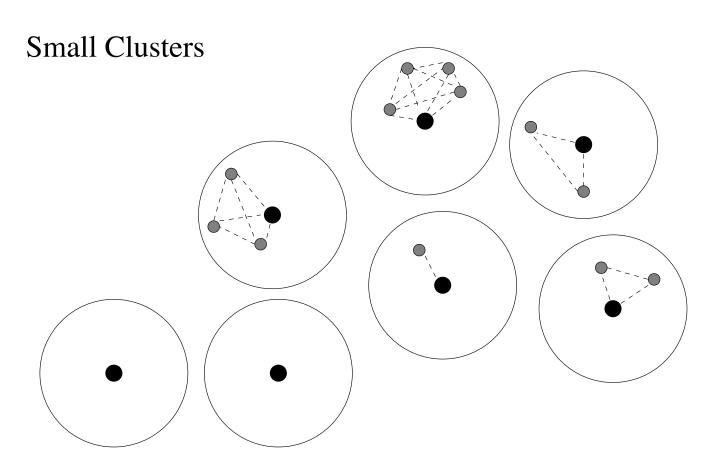
Algorithm: HopSet for distances in [R, 2R]:

- 1. $W = \epsilon R/(4\lceil \log n \rceil)$. Construct a W-cover χ . Big clusters: $X \in \chi$ such that $|X| > n^{1/3}$ Small clusters: $X \in \chi$ such that $|X| \le n^{1/3}$
- 2. For each small cluster: a complete set of edges
- 3. For each big cluster: star graph rooted at the center
- 4. Complete graph on centers of big clusters

The assigned edge weights are the distances.

Big Clusters





Size of the HopSet

We bound the number of hop edges produced.

• Complete graphs on small clusters: For each small cluster X, $O(|X|^2)$ edges. We have $|X| \leq n^{1/3}$ and $\Sigma_{X \in \chi} |X| = \tilde{O}(n)$. Hence,

$$\sum_{X \text{ is small}} |X|^2 \le \tilde{O}(n^{2/3})n^{2/3} = \tilde{O}(n^{4/3})$$

- Star graphs on big clusters: $\tilde{O}(n)$
- Complete graph on centers of big clusters: There are $\tilde{O}(n^{2/3})$ big clusters. Hence: $\tilde{O}(n^{4/3})$

Total number of hop edges: $\tilde{O}(n^{4/3})$

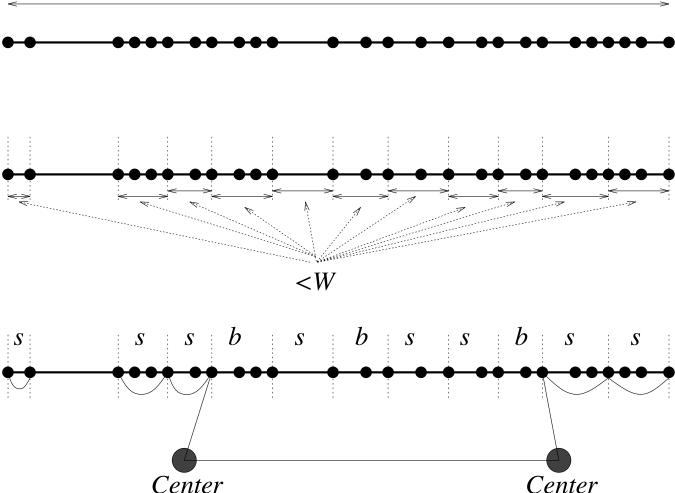
Correctness

We show that the algorithm produces a $(O(\epsilon^{-1}\log n), \epsilon)$ -HopSet.

Consider a path of weight in [R, 2R].

$$W = \epsilon R / (4\lceil \log n \rceil).$$

[R,2R]



Size of the path is $O(R/W) = O(\epsilon^{-1} \log n)$ Weight is larger by at most $4W \lceil \log n \rceil \le \epsilon R$

Computing better HopSets

To produce sparser HopSets (size $O(n^{1+\epsilon_0})$) more efficiently (time $O(mn^{\epsilon_0})$) we use recursive version of the algorithm.

Sketch:

Big Clusters: size $> n^{1-\epsilon_0}$

Small clusters: size $\leq n^{1-\epsilon_0}$

- Big clusters are treated the same.
- For small clusters, instead of a complete graph (and all-pairs shortest paths computations), we apply the algorithm recursively.

Computing HopSets in parallel

- limited covers can be computed efficiently in parallel [C]
- using limited covers in the HopSet algorithm produces **limited HopSets**
- HopSets can be obtained by applying $O(\log n)$ times a limited HopSet algorithm

ℓ -limited covers in parallel

Network G = (V, E) with weights $w : E \to \mathcal{R}_+$, a scalar $W \ge 1$, an integer $\ell > 1$

- \diamond An ℓ -limited W-cover of G is a collection of:
- subsets of nodes X_1, \ldots, X_k (clusters), and
- nodes v_1, \ldots, v_k where $v_i \in X_i$ (centers) such that:
- 1. Every path p such that $|p| \leq \ell$ and $w(p) \leq W$, $\exists i$ such that $p \subset X_i$
- 2. $\forall i, \forall u \in X_i, \operatorname{dist}\{v_i, u\} \leq W \lceil \log n \rceil$
- $3. \, \Sigma_i |X_i| = \tilde{O}(n).$
- $4. \Sigma_i |E \cap X_i^2| = \tilde{O}(m).$

Complexity: $\tilde{O}(\ell)$ expected time $\tilde{O}(m)$ work [C93]

ℓ -limited (d, ϵ) - HopSet

Integers ℓ , d, scalar $\epsilon > 0$

An ℓ -limited (d, ϵ) - HopSet of G = (V, E) is a set E^* of weighted edges such that:

1.
$$\operatorname{dist}_{E \cup E^*}(u_1, u_2) = \operatorname{dist}_E(u_1, u_2)$$

2.
$$\operatorname{dist}_{E \cup E^*}^d(u_1, u_2) \le (1 + \epsilon) \operatorname{dist}_{E}^\ell(u_1, u_2)$$

- The algorithm is such that d is independent of our choice of ℓ .
- The running time is linear in ℓ .

We will use $\ell = 2d$

HopSets in parallel

Consider a weighted network (V, E)

•
$$\ell \leftarrow 2d$$
, $E^{**} = \emptyset$

- For $i = 1, \ldots, \log n$:
 - 1. Compute ℓ -limited (d, ϵ) -HopSet E^* for $(V, E \cup E^{**})$
 - $2. E^{**} \leftarrow E^{**} \cup E^{*}$

Correctness:

After iteration i, E^{**} constitutes: a $2^i d$ -limited (d, ϵ_i) -HopSet of (V, E), where $(1 + \epsilon_i) = (1 + \epsilon)^i$.

We choose $\epsilon \ll 1/\log^2 n$ hence $\epsilon_i = O(1/\log n)$.

Open Problems

- Overcoming the transitive closure bottleneck for directed networks
- Existence of sparse HopSets for:
 - exact distances?
 - directed networks?
- Better sequential $((1 + \epsilon)$ -approx) shortest paths:

Upper bound: O(sm) for s sources

Lower bound: O(m + sn) for s sources