Size-Estimation Framework
with Applications
to Transitive Closure and Reachability

Edith Cohen
AT&T Bell Labs

Reachability and transitive closure

Directed network G = (V, E)

e Single source reachability:
For v € V, compute S(v) = {u € V|v ~ u}

e Transitive Closure:
Find all pairs (u,v) € V x V such that u~s v

d
b

s h

Reachability sets:
S(a)={a,b,df,h} S(c)={b,c,d,efh}S(e)={e}
The transitive closure:
T={(a,b) (a,d) (af) (a,h) (b,d) (b,f) (b,h) (c,b)
(c,d) (c,e) (cf) (c,h) (df) (d,h) (hf)}

Size Estimation
(Descendant Counting)

e For each node v € V, estimate the size of the
reachability set of v (number of descendants)
[S(v)| = H{u € Vv~ u}

e Estimate the number of pairs in the

transitive closure. ‘(u,v) eV X Vi]ur~ v‘

Reachability sets:
S(a)={a,b,df,h} S(c)={b,c,d,efh}S(e)={e}
The transitive closure: 15

T={(a,b) (a,d) (af) (a,h) (b.d) (bf) (b,h) (c.b)
(c.d) (c.e) (cf) (¢,h) (df) (d,h) (hf)}

Computing Transitive Closure and
Reachability

Networks with n nodes, m edges

e Single source reachability:
Computing the set S(v) for one node v € V.

O(m) time (e.g., by DFS, BFS).

e Reachability from each of s sources:
O(sm) time

o Computing the transitive closure (n sources):
O(mn) time
Or, in O(n?38) time using fast matrix multi-
plication [CW].

o Can we estimate the size faster than explicitly
computing the reachability sets?

Applications of fast size estimation

Example 1: Databases: [LN90] [LNS90]

e In query optimization, the size can be used:

o to determine the feasibility of a query
o to optimize the order of operations in
performing a complex query.

e the size itself might be the answer to the
query.

Example 2: Optimizing the order of
multiplications in computing a product of
sparse matrices.

Optimizing sparse matrix
multiplications

Given matrices Ay, xnys Bnoxngs Cngxng:
Determine the faster way to compute ABC.
(AB)C or A(BC) ?

Matrices Ay, xny, Bnyxng can be multiplied in

9 . .
.Zl(#nonzeros in A,;)(#nonzeros in B,,)
1=

operations.

Example:

412 0)(50 00
030-2{191 0 O
030 0 1(|00-34
001 7)01 6 7

takes 1 x1+3x2+2x24+2x3=17 ops.

... Optimizing MM

Example: ABC =

402 0\)(5-2 0 0}(6-1020
080-2(19 1 00|47 00
017 01|00 -34{{0 0 3 2
200 3)J{0 0 6 7/{0 0 -16

AB and BC take 16 operations.
The estimation alg. determines how many ops.
needed for A(BC)and (AB)C:

A(BC) takes 16 ops. (AB)C takes 32 ops.

Previous Work

Lipton and Naughton gave an algorithm for
estimating the size T of the transitive closure:

1. randomly sample s source nodes
(s is determined adaptively.)

2. compute the number of descendants for each
sampled node.
D is the total number of descendants

3. Estimate 7' = nD/s

Performance: For any fixed § >0, 0 <e<1,
e time O(n\/ﬁ)
e with probability > 1 —e, |T - 7| < 6T +n(1+6)

Remarks:
o If m > n, then |T —T| < 6T.

eruns in linear time for almost-regular net-
works (out-degrees of all nodes are within a
constant factor of each other)

New estimation algorithm

For any fixed 1 > e >0 and ¢ > 0:
o O(m) time
o computes estimates 5(v) (Vo € V), and T s.t.:

e with probability > 1—e: (1-6)T <7 < (146)T

A

o Ex(|T —T|) < 6T

e For each v € V, with probability > 1 —e:
(L=8)IS(v) < 5(v) < (1+8)IS(v)]

e For each v € V, Ex(||S(v)| — 5(v)|) < ¢]S(v)|
Improvements:

e Faster, runs in optimal linear time

e Produces better estimates

e Eistimates not only the closure size but also
the reachability of each node

Asymptotic behavior

For any 1 >¢> 0 and k£ > 0O:
o O(km) time
o computes estimates 5(v) (Vo € V), and T s.t.:

e with probability > 1 — c—O(€%k).
(1—6)T§f§ (1—|—€)T

o Bx(|T —T|) <T/Vk

e For each v € V,
with probability > 1 — c—O(%k).
(L=e)IS(v)[< s5(v) < (L4 ¢€)IS(v)]

o Bz(||S(v)| = 5(v)]) < IS(v)|/VE
o For k= 0(¢ 2logn),

with probability 1 -0(1/poly(n)), all estimates
are within e.

The estimation framework

e Sets Y and X
e S:Y — 2% maps each y € Y to a subset of X
Goal: compute estimates 5(y) of [S(y)| (Vy € Y)

We have access to the following
Least-Element subroutine (LE):
Input: an ordering r: X — {1,...,|X|} of X,
Output: a mapping L :Y — X, such that:
o for all ye Y, L(y) € S(y) and

o r(L(y)) — minwes(y)r(w).

10

Intuition for
use of LE to produce the estimates

o Select ranks R: X — [0,1] independently and
uniformly at random

e Apply LE with the ordering induced by R

e R(L(y)) is the min of |S(y)| values from U|0, 1].

The expected value of R(L(y)) is 5 1)

S(y)|+1
Hence, 5(y)| = Eaz(R(lL(y))) -1
(\ \
e &6 o ©o

IS(y1)I=3 IS(y2)I=8 IS(y3)I=4 [S(y4)]=2
We expect R(L(y4)) to be large and R(L(y2)) to be small

11

The estimation algorithm

Repeat for k iterations (1 <i < k):

1. Select ranks R; : X — [0,1], independently

and uniformly at random.

2. Apply LE with the ordering induced by R;.
L;:Y — X is the mapping returned by LE.

For each y € Y

Ex(y) «— Zléigkii(Li(y))

(estimator for the expected value of R(L(y)))
n 1
(estimator for [S(y)|)

The quality of the estimates increases with k:
For larger k (number of iterations), we get
a better estimator for the expected minimum
rank, and hence a better estimator for |S(y)|.

12

Quality of the estimates

e The running time amounts to
O(k) applications of the LE subroutine.

e The estimates s(y) (for y € Y) are such that:

1.For any e >0, for all y e Y,
. (2
Prob{[|S(y)| - 5(y)| > eS(y)[} = e "0
2.For all yeVY,

Ex(]|1S(y)| = s(w)I/I1S(v)|) = O(1/Vk)

o — =yey $(y) is such that:

1. Ex(|T - T|) = O(T/Vk)
2. Prob{|T = T| > T} = e~ O(€°k)

13

Estimating Reachability
O(m) time Least-Element algorithm:

e Assume r(vl) < 0 < r(vn).
Reverse edge directions. Iterate until vV = 0:
®] «— IIllIl{j|vt7 e V}.
Vi —{u € Vv, ~ u}
For every u € V, L(u) — v;.
V—V\V, E—FE\V,xV,.

d
b

s h

Reachability sets:
Sta)={a,b,dfh} S(b)={b,dfh} S(c)={b,c,d,efh}
S(d)={d f,n} Ste)={e} S(f)={f} S(h)={f.n}
For the order: r(e)<r(b)<r(d)<r(a)<r(c)<r(f)<r(h)
Least-elements are:

L(a)=b L(b)=b L(c)=e L(d)=d L(e)=e L(f)=f L(h)=f

14

Reachability size estimation in parallel

Previous work: For planar graphs, Kao and
Klein gave a polylog-time linear-work reduction
of descendent counting to single-source reacha-

bility (SSR).

New: A parallel algorithm for the least-
element problem. The algorithm computes
Least-Elements within the time and work
bounds of performing O(logn) SSR computa-
tions.

Hence, (apprx.) descendent counting on gen-

eral graphs has a polylog-time linear-work re-
duction to SSR.

Known polylog time SSR reachability algo-
rithms are work-intensive (Q(n?38) or Q(m?2)
[KS]). However, SSR. and hence size estimation
can be solved efficiently when we allow more
time or focus on restricted tamilies of graphs.

15

Computing Least-Elements in parallel
Divide and conquer approach: Maintain a
partition to subgraphs. For each subgraph
keep a sublist of possible least reachable-nodes.
Stop partitioning V\Cflhen the list has size 1.

For the order: r(e)<r(b)<r(d)<r(a)<r(c)<r(f)<r(h)
Least-elements are: L(a)=b L(b)=b L(c)=e L(d)=d L(e)=e L(f)=f L(h)=f
1. Reverse all edges
One subgraph G = (V, E), list — V.
2. For O(logn) phases repeat:
For each subgraph ¢/ = (V! E):

e Create a supernode s with edges to the half
lowest ranked nodes on the list of G’.

e Compute SSR from s to reach V.
Partition G’ to the subgraphs induced.

16

Estimating neighborhood sizes
in weighted graphs

e Directed Network G = (V, E)
positive weights w: E — Ry

efor a pairveV, re Ry,
N(v,r) is the r-neighborhood of v
(all nodes of distance < from v)

Goal: For query pairs (v,r) veV, r € R,
estimate |N(v,r)]

Some neighborhoods:
N(cA4)={b,cd,ef,h} N(d1)={dh} N(h,3)={h}
N(a,l)={a} N(a,5)={a,b,dfh} N(c,2)={b,c,de}

17

Bounds for estimating
neighborhoods’ sizes

Previously, to estimate neighborhood sizes we
had to compute them explicitly.

The fastest known methods to compute neigh-
borhoods of s nodes is by using Dijkstra’s short-
est paths algorithm.

The resulting running time is O(s(m +nlogn)).

New results:

For any 6§ >0, 1 >¢> 0,

after a O(mlogn +nlog?n) expected time
preprocessing step, we can do as follows:
For each query pair (v,r) we can produce,
in O(loglogn) expected time,

an estimate n(v,r) such that

1. Prob{||N(v,7)| — n(v,7)| > §|N(v,7)|} <1 —¢

2. E(|IN(v,)] = (v,)I/IN(v,7)]) <6

18

Estimation algorithm for
neighborhood sizes

e The LE alg. produces a list for every node.
e requires random order to be efficient.
e based on a modified Dijkjtra’s algorithm.

Some neighborhoods:

N(c,4)={b,cd,ef,h} N(d,1)={dh} N(h3)={h}
N(a,l)={a} N(a,5)={a,b,df,h} N(c,2)={b,c,de}
For the order: r(e)<r(b)<r(d)<r(a)<r(c)<r(f)<r(h)
Least-element lists:

a: (2,b) (0,a) b:(0b) c:(2,e)(1b)(0,c) d:(04d)
e:(0e) JA0Ff) h(4/)(0.h)

19

Algorithm for least-element lists

For each v € V, initialize ¢(v) « (0,v).
e Assume r(vl) < 0 < r(vn).

Reverse edge directions.
Iterate:

®] «— IIllIl{j|vt7 e V}.
Run modified Dijkstra from o;:
For each visited node « at distance D do
E(u) o E(u) U (vi, D).
Stop search at nodes v where
I(v;,d) € ((v) s.t. d < current distance.

Running time:
e Total number of visits (sum of sizes of lists)
of all nodes.

e Can be n visits for worst case rankings.

e Since ranks are random, expected number of
visits (size of lists) is O(logn).

20

More applications

e A new TC algorithm: In each iteration we
compute one random descendant for each
node. After O(klogn) with h.p. we compute
all reachability sets of size at most k.

e The estimation procedure associates with
each node a k-vector (ranks of least-elements
in k iterations). These vectors can be used
to estimate:

o whether two nodes {v,u} are such that
S(v) NS (u) > alS(v) U S(u)

onumber of elements reachable from a sub-
set of nodes U c V

e Eistimating sizes on-line

21

On-line estimation of
weights of growing sets

e X: a set of elements with weights w: X — Ry
e Y: a collection of subsets of X
Operations:

1. Create a new subset ¢/ € Y init. to 0,y € Y
2. Add a new z € X to some subsets.
3. Merge two subsets {y,y'} CY (y —yUy').

4. Weight-query: For a y € Y, estimate w(y).

Can be supported with constant/logarithmic
time per operation.
Appl: Keeping counts of preceding events in a
distributed system.

22

Open Problems

e 7 find more applications to the estimation
scheme

e 7 better TC algorithms

23

