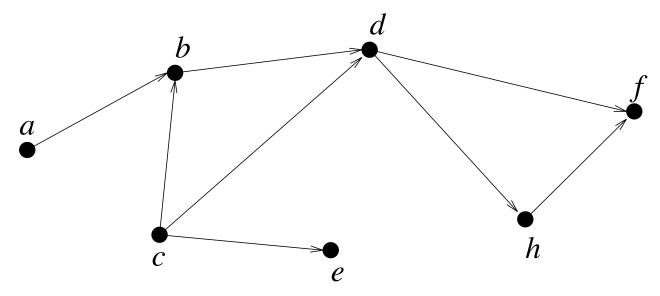
Size-Estimation Framework with Applications to Transitive Closure and Reachability

Edith Cohen AT&T Bell Labs

Reachability and transitive closure

Directed network G = (V, E)

- Single source reachability: For $v \in V$, compute $S(v) = \{u \in V | v \leadsto u\}$
- Transitive Closure: Find all pairs $(u, v) \in V \times V$ such that $u \leadsto v$



Reachability sets:

$$S(a) = \{a,b,d,f,h\}$$
 $S(c) = \{b,c,d,e,f,h\}$ $S(e) = \{e\}$

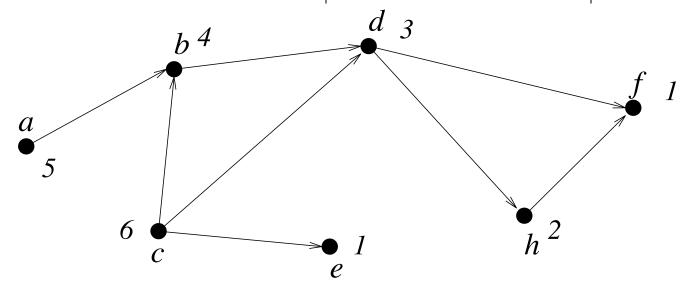
The transitive closure:

$$T = \{(a,b) (a,d) (a,f) (a,h) (b,d) (b,f) (b,h) (c,b)$$

$$(c,d) (c,e) (c,f) (c,h) (d,f) (d,h) (h,f)\}$$

Size Estimation (Descendant Counting)

- For each node $v \in V$, estimate the size of the reachability set of v (number of descendants) $|S(v)| = |\{u \in V | v \leadsto u\}|$
- Estimate the number of pairs in the transitive closure. $|(u,v) \in V \times V|u \leadsto v|$



Reachability sets:

$$S(a) = \{a,b,d,f,h\}$$
 $S(c) = \{b,c,d,e,f,h\}$ $S(e) = \{e\}$

$$T = \{(a,b) (a,d) (a,f) (a,h) (b,d) (b,f) (b,h) (c,b)$$

$$(c,d) (c,e) (c,f) (c,h) (d,f) (d,h) (h,f) \}$$

Computing Transitive Closure and Reachability

Networks with n nodes, m edges

- Single source reachability: Computing the set S(v) for one node $v \in V$. O(m) time (e.g., by DFS, BFS).
- Reachability from each of s sources: O(sm) time
- Computing the transitive closure (n sources): O(mn) time Or, in $O(n^{2.38})$ time using fast matrix multiplication [CW].
- Can we estimate the size faster than explicitly computing the reachability sets?

Applications of fast size estimation

Example 1: Databases: [LN90] [LNS90]

- In query optimization, the size can be used:
 - ♦ to determine the feasibility of a query
 - to optimize the order of operations in performing a complex query.
- the size itself might be the answer to the query.

Example 2: Optimizing the order of multiplications in computing a product of sparse matrices.

Optimizing sparse matrix multiplications

Given matrices $A_{n_1 \times n_2}$, $B_{n_2 \times n_3}$, $C_{n_3 \times n_4}$. Determine the faster way to compute ABC. (AB) C or A(BC)?

Matrices $A_{n_1 \times n_2}$, $B_{n_2 \times n_3}$ can be multiplied in

$$\sum_{i=1}^{n_2} (\#\text{nonzeros in } A_{\bullet i})(\#\text{nonzeros in } B_{i\bullet})$$

operations.

Example:

$$\begin{pmatrix} 4 & 1 & 2 & 0 \\ 0 & 8 & 0 & -2 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 7 \end{pmatrix} \begin{pmatrix} 5 & 0 & 0 & 0 \\ 9 & 1 & 0 & 0 \\ 0 & 0 & -3 & 4 \\ 0 & 1 & 6 & 7 \end{pmatrix}$$

takes $1 \times 1 + 3 \times 2 + 2 \times 2 + 2 \times 3 = 17$ ops.

... Optimizing MM

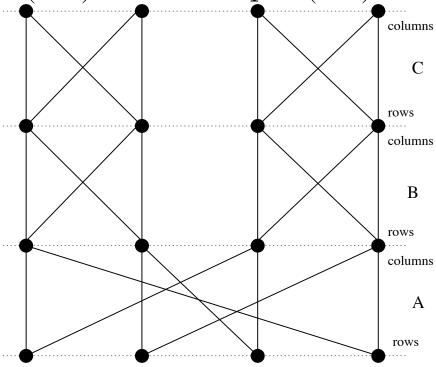
Example: ABC =

$$\begin{pmatrix} 4 & 0 & 2 & 0 \\ 0 & 8 & 0 & -2 \\ 0 & 1 & 7 & 0 \\ 2 & 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 5 & -2 & 0 & 0 \\ 9 & 1 & 0 & 0 \\ 0 & 0 & -3 & 4 \\ 0 & 0 & 6 & 7 \end{pmatrix} \begin{pmatrix} 6 & -1 & 0 & 0 \\ 4 & 7 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -1 & 6 \end{pmatrix}$$

AB and BC take 16 operations.

The estimation alg. determines how many ops. needed for A(BC) and (AB)C:

A(BC) takes 16 ops. (AB)C takes 32 ops.



Previous Work

Lipton and Naughton gave an algorithm for estimating the size T of the transitive closure:

- 1. randomly sample s source nodes (s is determined adaptively.)
- 2. compute the number of descendants for each sampled node.

D is the total number of descendants

3. Estimate $\hat{T} = nD/s$

Performance: For any fixed $\delta > 0$, $0 < \epsilon \le 1$,

- time $O(n\sqrt{m})$
- with probability $\geq 1 \epsilon$, $|T \hat{T}| \leq \delta T + n(1 + \delta)$

Remarks:

- If $m \gg n$, then $|T \hat{T}| \leq \delta T$.
- runs in linear time for almost-regular networks (out-degrees of all nodes are within a constant factor of each other)

New estimation algorithm

For any fixed $1 \ge \epsilon > 0$ and $\delta > 0$:

- $\diamond O(m)$ time
- \diamond computes estimates $\hat{s}(v)$ ($\forall v \in V$), and \hat{T} s.t.:
 - with probability $\geq 1 \epsilon$: $(1 \delta)T \leq \hat{T} \leq (1 + \delta)T$
 - $\bullet \ Ex(|T \hat{T}|) \le \delta T$
 - For each $v \in V$, with probability $\geq 1 \epsilon$: $(1 - \delta)|S(v)| \leq \hat{s}(v) \leq (1 + \delta)|S(v)|$
 - For each $v \in V$, $Ex(||S(v)| \hat{s}(v)|) \le \delta |S(v)|$

Improvements:

- Faster, runs in optimal linear time
- Produces better estimates
- Estimates not only the closure size but also the reachability of each node

Asymptotic behavior

For any $1 \ge \epsilon > 0$ and k > 0:

- $\diamond O(km)$ time
- \diamond computes estimates $\hat{s}(v)$ ($\forall v \in V$), and \hat{T} s.t.:
 - with probability $\geq 1 e^{-O(\epsilon^2 k)}$: $(1 \epsilon)T \leq \hat{T} \leq (1 + \epsilon)T$
 - $Ex(|T \hat{T}|) \le T/\sqrt{k}$
 - For each $v \in V$, with probability $\geq 1 - e^{-O(\epsilon^2 k)}$: $(1 - \epsilon)|S(v)| \leq \hat{s}(v) \leq (1 + \epsilon)|S(v)|$
 - $Ex(||S(v)| \hat{s}(v)|) \le |S(v)|/\sqrt{k}$
- \$\phi\$ For $k = O(\epsilon^{-2} \log n)$, with probability $1 O(1/\operatorname{poly}(n))$, all estimates are within ϵ .

The estimation framework

 \bullet Sets Y and X

• $S: Y \to 2^X$ maps each $y \in Y$ to a subset of X

Goal: compute estimates $\hat{s}(y)$ of |S(y)| $(\forall y \in Y)$

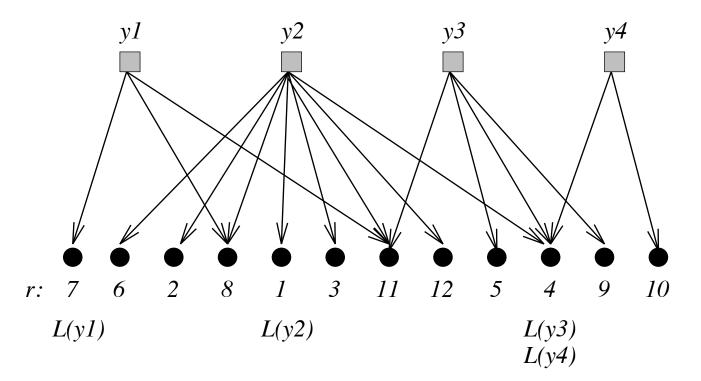
We have access to the following

Least-Element subroutine (LE):

Input: an ordering $r: X \to \{1, \dots, |X|\}$ of X,

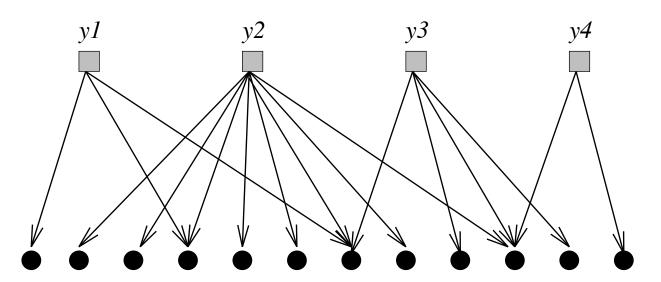
Output: a mapping $L: Y \to X$, such that:

- for all $y \in Y$, $L(y) \in S(y)$ and
- $r(L(y)) = \min_{w \in S(y)} r(w)$.



Intuition for use of LE to produce the estimates

- Select ranks $R: X \to [0,1]$ independently and uniformly at random
- Apply LE with the ordering induced by R
- R(L(y)) is the min of |S(y)| values from U[0,1]. The expected value of R(L(y)) is $\frac{1}{|S(y)|+1}$ Hence, $|S(y)| = \frac{1}{Ex(R(L(y)))} - 1$



$$|S(y1)|=3$$
 $|S(y2)|=8$ $|S(y3)|=4$ $|S(y4)|=2$

We expect R(L(y4)) to be large and R(L(y2)) to be small

The estimation algorithm

Repeat for k iterations $(1 \le i \le k)$:

- 1. Select ranks $R_i: X \to [0,1]$, independently and uniformly at random.
- 2. Apply LE with the ordering induced by R_i . $L_i: Y \to X$ is the mapping returned by LE.

For each $y \in Y$: $\hat{Ex}(y) \leftarrow \frac{\sum_{1 \leq i \leq k} R_i(L_i(y))}{k}$ (estimator for the expected value of R(L(y))) $\hat{s}(y) \leftarrow \frac{1}{\hat{Ex}(y)} - 1$ (estimator for |S(y)|)

The quality of the estimates increases with k: For larger k (number of iterations), we get a better estimator for the expected minimum rank, and hence a better estimator for |S(y)|.

Quality of the estimates

- The running time amounts to O(k) applications of the LE subroutine.
- The estimates $\hat{s}(y)$ (for $y \in Y$) are such that:
 - 1. For any $\epsilon > 0$, for all $y \in Y$,

$$\operatorname{Prob}\{||S(y)| - \hat{s}(y)| \ge \epsilon |S(y)|\} = e^{-O(\epsilon^2 k)}$$

2. For all $y \in Y$,

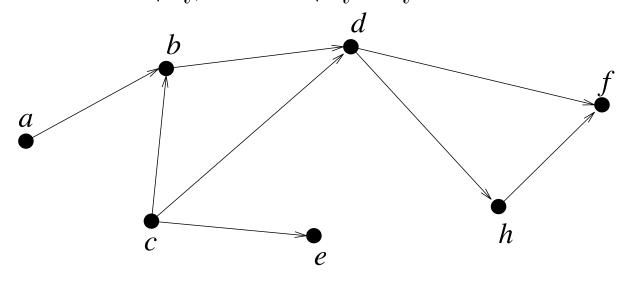
$$Ex(||S(y)| - \hat{s}(y)|/|S(y)|) = O(1/\sqrt{k})$$

- $\hat{T} \leftarrow \Sigma_{y \in Y} \hat{s}(y)$ is such that:
 - 1. $Ex(|\hat{T} T|) = O(T/\sqrt{k})$
 - 2. Prob{ $|\hat{T} T| \ge \epsilon T$ } = $e^{-O(\epsilon^2 k)}$

Estimating Reachability

O(m) time Least-Element algorithm:

- Assume $r(v_1) < \cdots < r(v_n)$. Reverse edge directions. Iterate until $V = \emptyset$:
- $i \leftarrow \min\{j | v_j \in V\}$. $V_i \leftarrow \{u \in V | v_i \leadsto u\}$ For every $u \in V_i$, $L(u) \leftarrow v_i$. $V \leftarrow V \setminus V_i$, $E \leftarrow E \setminus V_i \times V_i$.



Reachability sets:

$$S(a) = \{a,b,d,f,h\}$$
 $S(b) = \{b,d,f,h\}$ $S(c) = \{b,c,d,e,f,h\}$
 $S(d) = \{d,f,h\}$ $S(e) = \{e\}$ $S(f) = \{f\}$ $S(h) = \{f,h\}$

For the order: r(e) < r(b) < r(d) < r(a) < r(c) < r(f) < r(h)

Least-elements are:

$$L(a)=b$$
 $L(b)=b$ $L(c)=e$ $L(d)=d$ $L(e)=e$ $L(f)=f$ $L(h)=f$

Reachability size estimation in parallel

Previous work: For planar graphs, Kao and Klein gave a polylog-time linear-work reduction of descendent counting to single-source reachability (SSR).

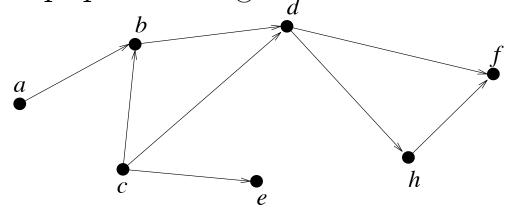
New: A parallel algorithm for the least-element problem. The algorithm computes Least-Elements within the time and work bounds of performing $O(\log n)$ SSR computations.

Hence, (apprx.) descendent counting on general graphs has a polylog-time linear-work reduction to SSR.

Known polylog time SSR reachability algorithms are work-intensive $(\Omega(n^{2.38}))$ or $\Omega(m^2)$ [KS]). However, SSR and hence size estimation can be solved efficiently when we allow more time or focus on restricted families of graphs.

Computing Least-Elements in parallel

Divide and conquer approach: Maintain a partition to subgraphs. For each subgraph keep a sublist of possible least reachable-nodes. Stop partitioning when the list has size 1.



For the order: r(e) < r(b) < r(d) < r(a) < r(c) < r(f) < r(h)

Least-elements are: L(a)=b L(b)=b L(c)=e L(d)=d L(e)=e L(f)=f L(h)=f

1. Reverse all edges

One subgraph G = (V, E), list $\leftarrow V$.

2. For $O(\log n)$ phases repeat:

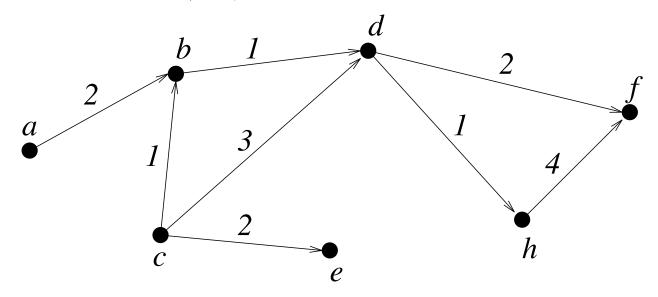
For each subgraph G' = (V', E'):

- Create a supernode s with edges to the half lowest ranked nodes on the list of G'.
- Compute SSR from s to reach \hat{V} . Partition G' to the subgraphs induced.

Estimating neighborhood sizes in weighted graphs

- Directed Network G = (V, E) positive weights $w : E \to R_+$
- For a pair $v \in V$, $r \in R_+$, N(v,r) is the r-neighborhood of v(all nodes of distance $\leq r$ from v)

Goal: For query pairs (v,r) $v \in V$, $r \in R$, estimate |N(v,r)|



Some neighborhoods:

$$N(c,4)=\{b,c,d,e,f,h\}$$
 $N(d,1)=\{d,h\}$ $N(h,3)=\{h\}$
 $N(a,1)=\{a\}$ $N(a,5)=\{a,b,d,f,h\}$ $N(c,2)=\{b,c,d,e\}$

Bounds for estimating neighborhoods' sizes

Previously, to estimate neighborhood sizes we had to compute them explicitly.

The fastest known methods to compute neighborhoods of s nodes is by using Dijkstra's shortest paths algorithm.

The resulting running time is $O(s(m + n \log n))$.

New results:

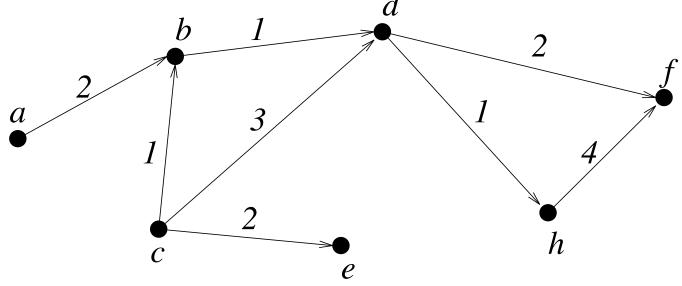
For any $\delta > 0$, $1 \ge \epsilon > 0$, after a $O(m \log n + n \log^2 n)$ expected time preprocessing step, we can do as follows: For each query pair (v,r) we can produce, in $O(\log \log n)$ expected time, an estimate $\hat{n}(v,r)$ such that

1. Prob{
$$||N(v,r)| - \hat{n}(v,r)| \ge \delta |N(v,r)| \le 1 - \epsilon$$

2.
$$E(||N(v,r)| - \hat{n}(v,r)|/|N(v,r)|) \le \delta$$

Estimation algorithm for neighborhood sizes

- The LE alg. produces a list for every node.
- requires random order to be efficient.
- based on a modified Dijkstra's algorithm.



Some neighborhoods:

$$N(c,4)=\{b,c,d,e,f,h\}$$
 $N(d,1)=\{d,h\}$ $N(h,3)=\{h\}$
 $N(a,1)=\{a\}$ $N(a,5)=\{a,b,d,f,h\}$ $N(c,2)=\{b,c,d,e\}$

For the order: r(e) < r(b) < r(d) < r(a) < r(c) < r(f) < r(h)Least-element lists:

$$a: (2,b) (0,a)$$
 $b:(0,b)$ $c:(2,e) (1,b) (0,c)$ $d:(0,d)$ $e:(0,e)$ $f:(0,f)$ $h:(4,f)(0,h)$

Algorithm for least-element lists

For each $v \in V$, initialize $\ell(v) \leftarrow (0, v)$.

• Assume $r(v_1) < \cdots < r(v_n)$. Reverse edge directions. Iterate:

• $i \leftarrow \min\{j | v_j \in V\}$. Run modified Dijkstra from v_i : For each visited node u at distance D do $\ell(u) \leftarrow \ell(u) \cup (v_i, D)$. Stop search at nodes v where $\exists (v_j, d) \in \ell(v)$ s.t. d < current distance.

Running time:

- Total number of visits (sum of sizes of lists) of all nodes.
- Can be *n* visits for worst case rankings.
- Since ranks are random, expected number of visits (size of lists) is $O(\log n)$.

More applications

- A new TC algorithm: In each iteration we compute one random descendant for each node. After $O(k \log n)$ with h.p. we compute all reachability sets of size at most k.
- The estimation procedure associates with each node a k-vector (ranks of least-elements in k iterations). These vectors can be used to estimate:
 - \diamond whether two nodes $\{v,u\}$ are such that $|S(v) \cap S(u)| \ge \alpha |S(v) \cup S(u)|$
 - \diamond number of elements reachable from a subset of nodes $U \subset V$
- Estimating sizes on-line

On-line estimation of weights of growing sets

- X: a set of elements with weights $w: X \to R_+$
- Y: a collection of subsets of X

Operations:

- 1. Create a new subset $y' \in Y$ init. to $\emptyset, y \in Y$
- 2. Add a new $x \in X$ to some subsets.
- 3. Merge two subsets $\{y, y'\} \subset Y \ (y \leftarrow y \cup y')$.
- 4. Weight-query: For a $y \in Y$, estimate w(y).

Can be supported with constant/logarithmic time per operation.

Appl: Keeping counts of preceding events in a distributed system.

Open Problems

- ? find more applications to the estimation scheme
- ? better TC algorithms