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Un-aggregated data

" Data element e € D has key and value (e.key,e.value)

2

&

= Weight “frequency” of a key x: W, = ) e.value
eeD|e.key=x

“density” W of
frequencies of keys)
Aggregated 11 ; 7 2x 7
View & & ‘ 1x 11
“ 1x 17

f-statistics: f(W) =), cx f(w,)

@

Will also use:

Max m, = max e.value
eeD|e.key=x




f- statistics f (W) = 2yex [ (Wy)

* Distinct f(w) =1 (w>0) #of distinct keys

"Sum f(w) =w 11 7

" Frequency moments f(w) = w? %%@
* Cap: f(w) = min(T, w)

» Complement Laplace transform: f(w) = 1 — e~

= Other: f(x) =log(1+ x) f(x) = min(x°7>,T)

Applications: Search queries, online interactions, online transactions,
word/term (co)-occurrencesin corpus, network traffic

Issue: Aggregated view W/is costly: Data movement, storage, computation

Use sketches!



Sketches

A sketch for f is a lossy summary of the data D from which we can
approximate (estimate) f(D) = f(W)

Sketch structure design goals:

= Composable/mergeable



Why composable is useful ?

Distributed data/para Iellze computatlon

Sketch 1

Streamed data

G
w



Approximate statistics via small sketches

= Data elemente € D has key and value (e.key,e.value)
* Weight of key x is the Sum of its elementvalues: w, = ) e.value

eeD|e.key=x
= f-statistics: f(D) = f(W) = X, ex f (Wy)

Quality: Coefficient of variation% = ¢, concentration

v = Distinctf(w) =1 (x > 0): [Flajolet Martin ’85, Flajolet et al ‘07] O(e~? + loglogn)
v ="Sumf(w)=w: [Morris '77] 0(e~? + loglog n)
= Frequency moments f(w) = wP: [Alon Matias Szegedy ’99, Indyk ‘01] O (¢ ~*log® n)

? » Capping f (w) = min(T,w) [C’" 15] (via sampling) O0(e~?logn)

I”

= Others: “universal” sketches [Braverman Ostrovsky “10] Polynomial(e~1,log n)



Sum: ZxEX f(Wx)

log(n): A single register of size to keep the sum. Clearly composable

O(e %+ loglogn): [Morris 1977] +[Flajolet 1985]

Maintain the “exponent” t, initialized ¢ < 0

= Estimate: return (1 +¢)" —1

= AddY:
" |ncrease t by maximum amount so that estimate increaseby Z < YV
" letA=Y—-7Z

" [ncrement t with probability

A€
(1+e)t

= Merget, < ty:
same as Add (1 + ¢)*2 — 1 to counter t,




Distinct count sketches

HyperLoglLog [Flajolet et al 2007]
= Optimal size O(e “+ loglogn) forCV % = € ; n distinct keys

= |dea: store k = € “exponents of hashes. Exponentsvalue concentrated so store one
and k offsets.

HIP estimators [Cohen ‘14, Ting ‘15]: halve the variance to i !

= Idea: track an estimated count ¢ with sketch structure. When  approx. count
structure is modified, add inverse modification probability to c.

If structure S is modified
¢ += 1/p(modified)



Distinct count sketches

*Simplified version [C’ 94]
= |nitialize: k = ¢ * registers ¢y, ..., C;, « ©0;
» Hash functions H; (x) ~ Exp[1]
" Process element e. kevy:
* Fori € [k]: ¢; « min(c;, H;(e. key))

i Ci

= Fstimate:

Analysis:

= ¢; ~ minimum over active keys of independent EXP[1] = c¢; ~ EXP|Distinct(D)]
= Parameter estimation problem

Reduce size: keep exponentsonly of ¢; , one exponent and €~ constant-size offsets

Composability: minimum is composable




MaxDistinct sketches

* Max value of an element with key x: m, = max e.value

*MaxDistinct(D) = >, m,

" |nitialize:
= =€ 7 registers ¢y, ..., Cy, < 0
» Hash functions H; (x) ~ Exp[1]

" Process element (e. key, e. value):
= Fori € [k]: Hi(e.key)

Cc; <« min(c;
L ( L' evalue

2. Ci

= Fstimate:

)

eeD|e.key=x

Analysis:

e Foreach key x, the minimum over
Hi(e.key) N EXP[mx]

e.value
" ¢; ~ minimum over keys x of

independent EXP|m,. | =
c; ~ EXP[MaxDistinct(D)]

elements of



Element processing framework

Data element 5 4omized  Outputelements

(O or more)

Composable
sketch of output
elements

Goal: E[ MaxDistinct(U,cp MAP(e))] = f(W), + concentration

Q: For which f we can do this? How? (specify MAP)



(Soft) cap functions

_W
capr(w) = T(l —e T)
capr(w) = min(T,w) §

11 / 43 %\
. 2 i »:}%/
w= % QW

(aggregated D)
cap;(W) = z min(3,w,) = 10

xeWw




Warm Up: Sketching cap r-statistics

we work with f,(w) =1 —e™¢

Il The statistics is the Laplace¢

(complement-Laplace) transform of » LEIW](t) = z(l — e—Wxt)
X

W (density function of frequencies)

capp-statistics is TX Laplace® transform at pointt¢ = %

since capr(w) =Tf;,r(w)

@r(W) = ) @prw) =T ) f1(we) = TLEWI(L/T)

X



Sketching Laplace® transform of Wat point ¢t

ft(W) =1—e™ [g f>Dz> ? W $

Input: e = (e. key, e. value)

Fori=1,..,r
"y, ~ EXP|e.value]
"If y; < t: output e.key#i

Output: (approximate) number
of distinct output keys

| Output sketch size is barely affected by r, only element processing



Claim: (correctness)

%E Distinct (U (e)) = z 1 — e Wxt = LE[W](¢)

eeD X

Input: e = (e. key, e.value)
Il Each input key x and i € [r] have

Fori=1,..,7 a unique potential output key x#i

"y, ~ EXP|e.value]
"|fy; < t: output e.key#i

We compute the probability that the output key x#1i is generated:

& y; <t foratleast one elemente € D withe.key = x

< min EXPle.value|l <t
e|le.key=x

— 1 _ a—Wyt
< EXP [WX] st 1 € Sum over all x, i (Poisson rvs) to establish claim



S b | _ ? We need “enough” = €4 distinct output keys for low error.
u t ety We set r = 0(e %), butstill need to address small ¢ ...

. %E[ Distinct(U,ep MAP(e))] =X, 1 — et = LE[W](t)

“density” W of frequencies: M
10X w, =1 i
2X wy =5

1x w, =10

f(W)

= Sum(W) = 30
* Distinct(W)=13
= [S[W](t) = 13 — 10e7t — 2¢ 72t — g~ 10¢

LWI(t)
t sum(W)
Distinpt(W)

1 1 1 1
0 1 2 3 4 5 6

At the regime with low distinct count we can use L |IW |(t) =~ tSum(W)



f(w) inthe nonnegative spanof g,(w) =1 —e ™"t

* Any function f(w) that can be expressed a(t) = 0 as:

flw) = f a(t)(1 — e "O)dt = L[a](w)
0

We get a(t) = L [FW)I(®) = ;LH750)(0)

Span includes all concave sublinear f without “sharp” corners:
low frequency moments p < 1; logarithms; soft capping functions...

f(w) T(1—eT) Vw log(1 + w)

1 1 —t
o= N +




Sketching statistics for f in the nonnegative span...

fw) = | a@@ - e™de = LTaw)  a() 2 0

0

f(w) =f fw)Ww)dw = f W(W)j a(t)(1 —e WHdtdw =
0 0 0

= foo a(t) jooW(W)(l —e W dw dt
0 0

statistics f (/) expressedin terms

— f a(t) L [W] (t)dt of the L¢ transform
0

= Can sketch L°|W |(t) at many points t. But we will see a better way...



Sketching ~ f(W) = [, a(t) LE[W](t)dt

* [dea: Modify the element map for point ¢ to [3 ‘>D$ ¥ I> }

work with weighted combination of ¢ values

point ¢ combination a(t) *slightly simplified
Input: e = (e. key, e. value) Input: e = (e. key, e. value)
Fori=1,..,r Fori=1,.. 1
=y; ~ EXP|[e.value] "y; ~ EXP[e.value]
"If y; < t: output e.key#i = output (e.key#i,fyoj a(t) dt)

Distinct count sketch MaxDistinct sketch



Extension: Multi-objective sketch of the span

" |dea: If we can sketch all t values together, we can use the sketch for all
statistics in the span

" Jog factor increase in sketch size (analysis of all-distance sketches [C’ 94,15])

point ¢ All t
Input: e = (e. key, e.value) Input: e = (e. key, e.value)
Fori=1,..,r Fori=1,..,r
"y, ~ EXP[e.value] "y, ~ EXP[e.value]
"If y; < t: output e.key#i "output (e.key#i,y;)

Distinct count sketch “All-threshold” sketch



All-threshold Distinct sketches

Input elements (e. key, e. value)

Sketch allows us to approximate forany t : Distinct{e. key | e. value < t}

Distinct counting sketch

= |nitialize: k = € “ registerscy,...,Cy, < 00;

» Hash functions H; (x) ~ Exp[1]

" Process element e. kevy:
» Fori € |k]: ¢; < min(c;, H;(e. key))

= Estimate:
Zici

= Logarithmic number of breakpoints [C’ 94]

All-threshold Distinct sketch

“Remember” for each register ¢;
all “breakpoints” where the
minimum increases

" Any “sample-based” distinct sketch can be similarly extended [C’ 15]



Handling sharp corners: All concave sublinear f

Reduces to sketching Cap;(w) = min(1,w)
= Soft cap gives (1 — l) X approximation

e
Better approximation:

" Use a signed inverse transform to approximate

Cap,(w), controlling the Ll(a(t)) _ fooo a(t)|de

= Separate estimate the negative and positive M= AN
components .

" Grid search on 3 points = We get 12%

= Open question to get €



Conclusion

Summary:

= Simple, practical design of composable double-logarithmic size
sketching for concave sublinear statistics

= Results novel theoretically even with 0(e~% log n) size
Open:

* Handling statistics with “sharp corners”.

" Loglog in the super-linear regime (second moment?)



Thank you |




