
Guest lecture II: Amos Fiat’s
Social Networks class

Edith Cohen

TAU, December 2014

Today

Diffusion of information/contagion in networks:
Applications:
 Influence queries
 Influence maximization
 Influence similarity
Reachability-based diffusion:
Models & Scalable computation
 Basic reachability
 IC model
 Set of instances

Diffusion in Networks

Contagion, information, news, opinions, …

spread over the network. When two nodes are
connected, infection can pass from one to the other.

Diffusion in Networks

Applications:

 Influence queries Inf(𝑆) : The expected benefit/risk of
recruiting/infecting the seed set S

 Influence maximization: With a given budget 𝑠, who
should we recruit ? (viral marketing) arg max

𝑆 =𝑠
 Inf(𝑆)

 Influence similarity: 𝐽(𝑢, 𝑣): similarity of 𝑢, 𝑣 in terms of
“correlation” of their influence sets

Model of how information/infection spreads

Challenges

 Modeling: Formulate a model that captures
what we want

 Scalability: Very efficient computation of
many queries on very large networks

Modeling Diffusion

Intuitions we may want our model to capture:

 Influence extends centrality from one node to multiple
nodes

 The marginal influence of adding another seed node 𝑢
to 𝑆 is at most Inf(𝑢) (submodularity)

Inf 𝑺𝟏 ∪ 𝑺𝟐 ≤ Inf 𝑺𝟏 + Inf(𝑺𝟐)

 Influence can only increase if we add nodes to 𝑆
(monotonicity)

Inf 𝑺𝟏 ∪ 𝑺𝟐 ≥ max{Inf 𝑆1 , Inf 𝑆2 }

Simplest Model: Reachability
“You infect everyone you can reach”

𝐼𝑛𝑓 = 5

For a seed set 𝑆 of nodes: 𝑅 𝑆 = 𝑢 ∃𝑣 ∈ 𝑆, 𝑣 ↝ 𝑢} are

 the nodes reachable from at least one node in 𝑆.
Influence 𝑆 = |𝑅 𝑆 |.

Simplest Model: Reachability
“You infect everyone you can reach”

Submodular and monotone !

𝐼𝑛𝑓 = 9

Scalability: Node sketches

If we compute a MinHash sketch of 𝑅(𝑣) for each
node 𝑣, we can efficiently estimate answers for

 Influence queries: For a set 𝑆 of one or more
seed nodes, estimate 𝐼𝑛𝑓 𝑆 = | ∪𝑣∈𝑆 𝑅 𝑣 |
with a small relative error

 Jaccard similarity of “influence sets” of two nodes

𝐽 𝑢, 𝑣 =
|𝑅 𝑣 ∩𝑅 𝑢 |

|𝑅 𝑣 ∪𝑅 𝑢 |

 More queries supported by MinHash sketches.

Reachability diffusion model: Issues
“You infect everyone you can reach”

 Intuition that contagion is probabilistic in nature

Reachability does not capture:

Reachability diffusion model: Issues
“You infect everyone you can reach”

 Asymmetry: Distinguish strong or weak connections.
Even if network is undirected, influence is not (may
depend, say, on how many friends you have)

Reachability does not capture:

Strong tie weak tie

Reachability diffusion model: Issues
“You infect everyone you can reach”

 Asymmetry: Distinguish strong or weak connections.
Even if network is undirected, influence is not (may
depend, say, on how many friends you have)

Reachability does not capture:

More influencial Less influencial

Reachability diffusion model: Issues
“You infect everyone you can reach”

 Not robust: Can be very sensitive to presence or
deletions of one or few (weak) edges

Reachability does not capture:

Reachability diffusion model: Issues
“You infect everyone you can reach”

 Infection probability should decrease with path
length and increase with path multiplicity.

Reachability does not capture:

≪ ≪

Reachability diffusion model: Issues
“You infect everyone you can reach”

 Intuition that contagion is probabilistic in nature

 Asymmetry: Distinguish strong or weak connections.
Even if network is undirected, influence is not (may
depend, say, on how many friends you have)

 Not robust: Can be very sensitive to presence or
deletions of one or few (weak) edges

 Infection probability should decrease with path
length and increase with path multiplicity.

Reachability does not capture:

Independent Cascade (IC) diffusion
model [Kempe, Kleinberg, Tardos 2003]

 Each (directed) edge 𝑒 has an independent
probability 𝑝𝑒 to be active

 Influence of 𝑆 is the expected number of
reachable nodes

𝑝𝑒

Independent Cascade (IC)

 Intuition that contagion is probabilistic in nature

 Asymmetry: Distinguish strong or weak connections.
Even if network is undirected, influence is not (may
depend, say, on how many friends you have)

 Not robust: Can be very sensitive to presence or
deletions of one or few (weak) edges

 Infection probability should decrease with path
length and increase with path multiplicity.

IC model does capture:

Independent Cascade (IC)

 Asymmetry: Distinguish strong or weak connections.
Even if network is undirected, influence is not (may
depend, say, on how many friends you have)

More influencial Less influencial

Can do 𝑝(𝑢, 𝑣) ∝ 1/deg (𝑣)

Can model stronger ties with higher 𝑝(𝑢, 𝑣)

Independent Cascade (IC)

 Infection probability should decrease with path
length and increase with path multiplicity.

≪ ≪
𝑝3 𝑝2 ≈ 4𝑝2

Scalability: Sketches for an IC model

To work with an IC model:

We would like to compute a MinHash sketch of
the “influence set” of each node. This would
allow us to answer efficiently influence queries
Inf 𝑆 and similarity queries 𝐽(𝑢, 𝑣).

 What are the sets that we sketch ?

Sketches for a fixed set of instances

 We first consider a fixed (arbitrary) set of
instances (edge sets): Influence is the average (or
sum) of reachable set sizes, over instances.

Motivation:
 When the instances come from “enough” Monte

Carlo simulations of an IC model, the sketches
capture the model.

 Capture “median” behavior of IC model
 Can capture relations beyond IC model (edges

not independent)

Fixed set of instances
𝐸1

𝐸2

𝐸3

𝐸4

Fixed set of instances: Inf()
𝐸1

𝐸2

𝐸3

𝐸4

2

10 8

6

Inf = 6.5

Sketches for a fixed set of instances

 Compute a set of Reachability MinHash
sketches for each instance. Keep and work
with all sets.

 For a query Inf(𝑆): Estimate from sketches the
reachability of 𝑆 in each instance and then
average.

 But with ℓ instances, we need, ℓ𝑘 storage per
node!

Approach I [CWY KDD 2009]

Sketches for a set of ℓ instances
Better Approach [CDPW 2014]:

Combined reachability sets

 Elements are (node,instance) pairs.

 The combined reachability set of 𝑣:
𝑅𝑣 = 𝑢, 𝑖 𝑣 ↝ 𝑢 𝑖𝑛 𝐸𝑖}

 Inf 𝑆 =
 𝑅𝑣𝑣∈𝑆

ℓ

 𝐽 𝑢, 𝑣 =
𝑅𝑢∩𝑅𝑣

|𝑅𝑢∪𝑅𝑣|

Combined reachability sketches

 Each node-instance pair gets a rank ∼ 𝑈[0,1]. The
bottom-𝑘 sketch includes the 𝑘 smallest ranks of
pairs in 𝑅𝑣

 We can sketch 𝑅𝑣 by first computing a set of sketches
in each instance, and then computing the union
sketch over instances (𝑘 smallest hash values across)

We compute MinHash sketches for the combined
reachability sets: 𝑅𝑣 = 𝑢, 𝑖 𝑣 ↝ 𝑢 𝑖𝑛 𝐸𝑖}

 Computation grows linearly with the number of instances
 Sketch size is 𝑂(𝑘)

Sketches for an IC model

 Simulate working with infinite number of
instances. 𝑂(𝑛𝑘) instances are always enough

 Estimation accuracy of influence and similarity
is with respect to the expectation in the IC
model

 Computation of IC sketches can be expensive

Open problem: Can we compute IC model
sketches more efficiently ?

IC model sketching
𝑗 ← 0

Repeat until ∀𝑣, 𝑆 𝑣 = 𝑘

 𝑗++; Select a node uniformly at random.

 Perform a reverse search from the node,
instantiating edges along the way.

 ∀ visited 𝑢 with 𝑆 𝑢 < 𝑘, add 𝑗 to 𝑆 𝑢

 A node selected 𝑘 times always has a full sketch.
 𝑘𝑛 iterations suffice: Can stack 𝑘 random

permutations of the 𝑛 nodes

Influence Maximization

For a given 𝑠, find a set of seed nodes 𝑆 of size 𝑠
that has maximum influence

arg max
𝑆 =𝑠

 Inf(𝑆)

We can consider influence maximization:
 On a single instance (“static” graph)
 A set of instances
 An IC model

Single instance captures the basic scalability challenges

Influence Maximization

 Bad news: Problem is NP-hard even for a single
instance (one “static” graph)

arg max
𝑆 =𝑠

 Inf(𝑆)

Arc (𝑢, 𝑣) ⇔ element 𝑣 is in set 𝑢

Elements

Sets

Reduction to max/set cover:

Influence Maximization

 Good news: Monotone and submodular

arg max
𝑆 =𝑠

 Inf(𝑆)

The greedy algorithm gives approximation ratio:

≥ 1 − 1 −
1

𝑠

𝑠
> 1 −

1

𝑒
 of opt [NWF ‘78]

 Practice: Greedy is extensively used in very
many applications.

 Theory: Approximation ratio is the best we can
hope for in ≪ 𝑛𝑠 time [Feige ‘98]

Greedy Influence Maximization

Initialize: 𝑆 ← ∅

Repeat:

 𝑢 ← arg max
𝑣
 Inf 𝑆 ∪ 𝑣

 𝑆 ← 𝑆 ∪ {𝑢}

Until 𝑆 = 𝑠

Greedy generates a sequence of nodes
The approximation guarantee is for each prefix

Greedy Sequence

1

2
3

Inf = 9

Inf = 12

Inf = 13

Scalability

Greedy does not scale well even on a single
“static” graph – We can not afford much more
than linear time on very large networks

 In each step we need to determine the node
with maximum marginal gain.

 Exact computation of the cardinality for each
node is costly (search from each node)

Scalability

Settle for approximate maximum in each step!

Relative error affects approximation ratio only

by a little: ≥ 1 − 1 −
1

𝑠

𝑠
− O(𝜖) times Opt

 We can use reachability sketches to determine
the approximate maximum in each step.

 But… still 𝑂(#𝑒𝑑𝑔𝑒𝑠) per step.

SkIM: Sketch Based Influence
Maximization [CDPW CIKM 2014]

SkIM Iteration:

 Compute “sketches” but only to the point of
determining the node 𝑢 with (approximate)
maximum influence.

 Update a residual problem which has selected
and covered nodes removed. Other nodes
have partial sketches that include entries due
to remaining nodes.

We show SkIM for one instance (similar for multiple instances)

SkIM: Sketch Based Influence
Maximization [CDPW CIKM 2014]

SkIM Iteration (detailed): Use 𝑘 = 𝑂 𝜖−2 log n
Sketch building:
Select new node 𝑣 uniformly, do a reverse search from 𝑣 .
For each visited node 𝑢:

 Increment 𝑠𝑘[𝑢]
 𝐿𝑣 ← 𝐿𝑣 ∪ 𝑢
 If 𝑠𝑘 𝑢 == 𝑘: break; select 𝑢

If all nodes processed: 𝑢 ← arg max
𝑢
 𝑠𝑘[𝑢]

 Residual problem update after selecting 𝑢:
 Do a forward search from 𝑢.
 Remove all reachable edges and nodes z.
 For all 𝑢 ∈ 𝐿𝑧, decrement 𝑠𝑘[𝑢]

SkIM with 𝑘 = 3
Sampled

Sketch size

Inverted sketch

1
1

1

1

SkIM with 𝑘 = 3
Sampled

Sketch size

Inverted sketch

1
1

1

1

1

1

1

1

SkIM with 𝑘 = 3
Sampled

Sketch size

Inverted sketch

1
1

1

1

1

1

1

SkIM with 𝑘 = 3
Sampled

Sketch size

Inverted sketch

1
1

2

2

1

1

1

1

1

SkIM with 𝑘 = 3
Sampled

Sketch size

Inverted sketch

1
1

2

2

1

1

1

1

1

SkIM with 𝑘 = 3
Sampled

Sketch size

Inverted sketch

1
1

2

2

1

1 1

1

1

1

1

1

SkIM with 𝑘 = 3
Sampled

Sketch size

Inverted sketch

2
2

3

3

1

1

1 1

1

1

1

1

1

SkIM with 𝑘 = 3
Sampled

Sketch size

Inverted sketch

2
2

3

3

1

1

1 1

1

1

1

1

1

SkIM with 𝑘 = 3
Sampled

Sketch size

Inverted sketch

2
2

3

3

1

1

1 1

1

1

1

1

1

SkIM with 𝑘 = 3
Sampled

Sketch size

Inverted sketch

2
2

3

3 0

1

1

1 1

1

1

1

1

1

SkIM with 𝑘 = 3
Sampled

Sketch size

Inverted sketch

3 0

Residual problem

1

1

1

SkIM correctness

 Bottom-𝑘 estimator depends only on largest
value in sketch (threshold value): Highest
estimate for node with smallest threshold. SkIM
computes sketches only to the point that the one
that would have the highest estimate (lowest
threshold) is determined.

 From concentration, 𝑘 = 𝑂 𝜖−2 log n suffices
for relative error 1 ± 𝜖 WHP for all nodes in all
iterations.

 Can verify that retained sketch entries
correspond to residual problem.

SkIM running time (1 instance)

 Forward searches to remove selected and
“covered” nodes are linear 𝑂(𝑚). Sketch
decrements are “charged” to decrements

 Backward searches for sketch building:
 Each node visit (and scan of in-edges) is charged to a

new entry in sketch.
 There are at most 𝑘 entries at any particular time.
 Entries get removed: but removals mean that

statistically “marginal influence” decreases in
expectation by 1 −

1

𝑘
. This can happen at most

𝑘 log 𝑛 times per node.

SkIM: Sketch Based Influence
Maximization [CDPW CIKM 2014]

One instance: 𝑂(𝜖−2𝑚 log2𝑛).

 We use 𝑘 = 𝑂(𝜖−2 log 𝑛)
 In expectation, each node is visited 𝑂(𝑘 log 𝑛)

times (total number of sketch entries)
 So we have 𝑂 𝑚𝑘 log 𝑛 = 𝑂(𝑚𝜖−2 log2 𝑛) edge

traversals in total for sketch building
 We have 𝑂 𝑛𝑘 log 𝑛 = 𝑂(𝑛𝜖−2 log2 𝑛) total

entries in sketches

Engineering SkIM

𝜖−2 log2 𝑛 is a costly ! Is it really expressed in
running time? Can we reduce it in practice and
retain estimation guarantees (confidence) ?

 One log 𝑛 factor is due to sketch entries
analysis. In practice, it does not show up.

 The rest is due to working with 𝑘 =
𝑂(𝜖−2 log 𝑛). We can engineer around it.

…Engineering SkIM

Instead of using a “worst-case” 𝑘 = 𝑂(𝜖−2 log 𝑛),
we adaptively estimate the error on the maximum
and increase 𝑘 only as needed. To estimate, we use:
 Computed exact marginal gain
 Other partial sketches to determine separation
We gain when:

 Max node is unique and separated from rest (can
reduce the “ 𝜖−2” dependence)

 Influence distribution is skewed (eliminate “union
bound” log 𝑛)

 When aiming for specific 𝑠, can increase 𝜖 on the go

SkIM on multiple instances

 Sketch building: “Elements” are node-instance
pairs. Select randomly a remaining node-
instance pair (𝑣, 𝑖). Do a reverse search from
𝑣 in instance 𝑖. Maintain 𝐿(𝑣,𝑖) of visited

nodes.

 Residual problem: Forward search from 𝑢 in
each instance. If 𝑣 is reached in instance 𝑖 and
𝐿(𝑣,𝑖) exists. Decrement 𝑠𝑘[𝑧] for all 𝑧 ∈ 𝐿(𝑣,𝑖)

SkIM: Sketch Based Influence
Maximization [CDPW CIKM 2014]

One instance: 𝑂(𝜖−2𝑚 log2𝑛).

ℓ instances:

 𝑂(|𝐸𝑖|
ℓ
𝑖=1 + 𝜖−2𝑚 log2𝑛). (𝑚 is sum over

nodes of max indegree in an instance)

IC model: ?? Conjecture that a “small number,”
perhaps 𝑂 𝜖−2 log n , instances suffice

[CDPW 2014] data sets from SNAP

Use of reachability sketches for influence:
 Chen, Wang, Young. Efficient Influence Maximization in Social Networks.

KDD 2009
Combined reachability sketches and scalable influence maximization:
 Cohen, Delling, Pajor, Werneck. Sketch-based Influence Maximization

and Computation: Scaling up with Guarantees. CIKM 2014

 IC model: Kempe, Kleinberg, Tardos “Maximizing the spread of influence
through a social networks” KDD 2003

Greedy algorithm for monotone submodular functions:
 Nemhauser, Wolsey, Fisher. “An analysis of the approximations of

maximizing submodular set functions” 1978

Bibliography: Reachability-based diffusion in networks

 Reachability sketches: E. Cohen “Size-Estimation Framework with Applications to
Transitive Closure and Reachability” JCSS 1997

 KDD 2012 tutorial: Castillo, Chen, Lakshmanan “information and influence
spread in social networks” http://research.microsoft.com/en-
us/people/weic/kdd12tutorial_inf.aspx

 There is a huge literature on scalable IM implementations (without guarantees…)

http://research.microsoft.com/en-us/people/weic/kdd12tutorial_inf.aspx
http://research.microsoft.com/en-us/people/weic/kdd12tutorial_inf.aspx
http://research.microsoft.com/en-us/people/weic/kdd12tutorial_inf.aspx
http://research.microsoft.com/en-us/people/weic/kdd12tutorial_inf.aspx
http://research.microsoft.com/en-us/people/weic/kdd12tutorial_inf.aspx

M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the temporal
dynamics of diffusion networks. In ICML, 2011.

 Enhanced model and scalable algorithms:
 Cohen, Delling, Pajor, Werneck. Timed-influence: Computation and

Maximization. http://arxiv.org/abs/1410.6976

N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha. Scalable influence
estimation in continuous-time diffusion networks. In NIPS. 2013

All-Distances Sketches:
 E. Cohen “Size-Estimation Framework with Applications to Transitive

Closure and Reachability” JCSS 1997
 All-Distances skethces, revisited. PODS 2014

http://arxiv.org/abs/1306.3284

Further Modelling flexibility: “timed” influence
Distance-based diffusion in networks

http://arxiv.org/abs/1410.6976
http://arxiv.org/abs/1410.6976

