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Diffusion of information/contagion in networks: 
Applications: 
 Influence queries 
 Influence maximization 
 Influence similarity 
Reachability-based diffusion: 
Models & Scalable computation 
 Basic reachability 
 IC model  
 Set of instances  



Diffusion in Networks  

Contagion, information, news, opinions,  … 

spread over the network.  When two nodes are 
connected, infection can pass from one to the other. 



Diffusion in Networks  

Applications: 

 Influence queries Inf(𝑆) :  The expected benefit/risk of  
recruiting/infecting the seed set S 

 Influence maximization: With a given budget 𝑠, who 
should we recruit ? (viral marketing) arg max

𝑆 =𝑠
 Inf(𝑆) 

 Influence similarity: 𝐽(𝑢, 𝑣): similarity of 𝑢, 𝑣 in terms of 
“correlation” of their influence sets  

Model of how information/infection spreads 



Challenges 

 Modeling:  Formulate a model that captures 
what we want 

 Scalability:  Very efficient computation of 
many queries on very large networks 



Modeling Diffusion  

Intuitions we may want our model to capture:   

 Influence extends centrality from one node to multiple 
nodes 

 The marginal influence of adding another seed node 𝑢 
to 𝑆 is at most Inf(𝑢) (submodularity) 

Inf 𝑺𝟏 ∪ 𝑺𝟐 ≤ Inf 𝑺𝟏 + Inf(𝑺𝟐) 

 Influence can only increase if we add nodes to 𝑆  
(monotonicity)  

Inf 𝑺𝟏 ∪ 𝑺𝟐 ≥ max{Inf 𝑆1 , Inf 𝑆2 } 

 



Simplest Model:  Reachability  
“You infect everyone you can reach” 

𝐼𝑛𝑓        = 5 

For a seed set 𝑆 of nodes: 𝑅 𝑆 = 𝑢 ∃𝑣 ∈ 𝑆, 𝑣 ↝ 𝑢} are 

 the nodes reachable from at least one node in 𝑆. 
Influence 𝑆 = |𝑅 𝑆 |.  



Simplest Model:  Reachability  
“You infect everyone you can reach” 

Submodular and monotone ! 

𝐼𝑛𝑓               = 9 



Scalability: Node sketches 

If we compute a MinHash sketch of 𝑅(𝑣) for each 
node 𝑣, we can efficiently estimate answers for 

 Influence queries:  For a set 𝑆 of one or more 
seed nodes, estimate 𝐼𝑛𝑓 𝑆 = | ∪𝑣∈𝑆 𝑅 𝑣 | 
with a small relative error 

 Jaccard similarity of “influence sets” of two nodes 

𝐽 𝑢, 𝑣 =
|𝑅 𝑣 ∩𝑅 𝑢 |

|𝑅 𝑣 ∪𝑅 𝑢 |
 

 More queries supported by MinHash sketches. 



Reachability diffusion model: Issues  
“You infect everyone you can reach” 

 Intuition that contagion is probabilistic in nature 

Reachability does not capture:  



Reachability diffusion model: Issues  
“You infect everyone you can reach” 

 Asymmetry:  Distinguish strong or weak connections.  
Even if network is undirected, influence is not (may 
depend, say, on how many friends you have) 

Reachability does not capture:  

Strong tie weak tie 
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More influencial Less influencial 



Reachability diffusion model: Issues  
“You infect everyone you can reach” 

 Not robust:  Can be very sensitive to presence or 
deletions of one or few (weak) edges 

Reachability does not capture:  



Reachability diffusion model: Issues  
“You infect everyone you can reach” 

 Infection probability should decrease with path 
length and increase with path multiplicity. 

Reachability does not capture:  

≪ ≪ 
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Independent Cascade (IC) diffusion 
model [Kempe, Kleinberg, Tardos 2003] 

 Each (directed) edge 𝑒 has an independent 
probability 𝑝𝑒 to be active 

 Influence of 𝑆 is the expected number of 
reachable nodes 

𝑝𝑒 



Independent Cascade (IC) 

 Intuition that contagion is probabilistic in nature 

 Asymmetry:  Distinguish strong or weak connections.  
Even if network is undirected, influence is not (may 
depend, say, on how many friends you have) 

 Not robust:  Can be very sensitive to presence or 
deletions of one or few (weak) edges 

 Infection probability should decrease with path 
length and increase with path multiplicity. 

IC model does capture:  



Independent Cascade (IC) 

 Asymmetry:  Distinguish strong or weak connections.  
Even if network is undirected, influence is not (may 
depend, say, on how many friends you have) 

 

More influencial Less influencial 

Can do 𝑝(𝑢, 𝑣) ∝ 1/deg (𝑣) 

Can model stronger ties with higher 𝑝(𝑢, 𝑣) 



Independent Cascade (IC) 

 Infection probability should decrease with path 
length and increase with path multiplicity. 

≪ ≪ 
𝑝3 𝑝2 ≈ 4𝑝2 



Scalability: Sketches for an IC model 

To work with an IC model: 

We would like to compute a MinHash sketch of 
the “influence set” of each node.  This would 
allow us  to answer efficiently influence queries 
Inf 𝑆  and similarity queries 𝐽(𝑢, 𝑣). 

 What are the sets that we sketch ? 



Sketches for a fixed set of instances 

 We first consider a fixed (arbitrary) set of 
instances (edge sets):  Influence is the average (or 
sum) of reachable set sizes, over instances. 

Motivation: 
 When the instances come from “enough”  Monte 

Carlo simulations of an IC model, the sketches 
capture the model. 

 Capture “median” behavior of IC model 
 Can capture relations beyond IC model (edges 

not independent) 



Fixed set of instances 
𝐸1 

𝐸2 

𝐸3 

𝐸4 



Fixed set of instances: Inf(     ) 
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Sketches for a fixed set of instances 

 Compute a set of Reachability MinHash 
sketches for each instance.  Keep and work 
with all sets.   

 For a query Inf(𝑆): Estimate from sketches the 
reachability of 𝑆 in each instance and then 
average.   

 But with ℓ instances, we need, ℓ𝑘 storage per 
node! 

Approach I [CWY KDD 2009] 



Sketches for a set of ℓ instances 
Better Approach [CDPW 2014]:  

Combined reachability sets 

 Elements are (node,instance) pairs. 

 The combined reachability set of 𝑣: 
𝑅𝑣 = 𝑢, 𝑖 𝑣 ↝ 𝑢 𝑖𝑛 𝐸𝑖} 

 Inf 𝑆 =
 𝑅𝑣𝑣∈𝑆

ℓ
 

 𝐽 𝑢, 𝑣 =
𝑅𝑢∩𝑅𝑣

|𝑅𝑢∪𝑅𝑣|
 



Combined reachability sketches 

 Each node-instance pair gets a rank ∼ 𝑈[0,1].  The 
bottom-𝑘 sketch includes the 𝑘 smallest ranks of 
pairs in 𝑅𝑣  

 We can sketch 𝑅𝑣 by first computing a set of sketches 
in each instance, and then computing the union 
sketch over instances (𝑘 smallest hash values across) 

We compute MinHash sketches for the combined 
reachability sets:  𝑅𝑣 = 𝑢, 𝑖 𝑣 ↝ 𝑢 𝑖𝑛 𝐸𝑖} 

 Computation grows linearly with the number of instances 
 Sketch size is 𝑂(𝑘)  



Sketches for an IC model 

 Simulate working with infinite number of 
instances.  𝑂(𝑛𝑘) instances are always enough 

 Estimation accuracy of influence and similarity 
is with respect to the expectation in the IC 
model   

 Computation of IC sketches can be expensive  

Open problem:  Can we compute IC model 
sketches more efficiently ? 

 



IC model sketching 
𝑗 ← 0  

Repeat until ∀𝑣, 𝑆 𝑣 = 𝑘 

 𝑗++;  Select a node uniformly at random. 

 Perform a reverse search from the node, 
instantiating  edges along the way. 

 ∀ visited 𝑢 with 𝑆 𝑢 < 𝑘, add 𝑗 to 𝑆 𝑢  

 A node selected 𝑘 times always has a full sketch.  
 𝑘𝑛  iterations suffice: Can stack 𝑘 random 

permutations of the 𝑛 nodes 





Influence Maximization 

For a given 𝑠, find a set of seed nodes 𝑆 of size 𝑠 
that has maximum influence 

arg max
𝑆 =𝑠

 Inf(𝑆) 

We can consider influence maximization: 
 On a single instance (“static” graph) 
 A set of instances 
 An IC model 

Single instance captures the basic scalability challenges 



Influence Maximization 

 Bad news: Problem is NP-hard even for a single 
instance (one “static” graph) 

arg max
𝑆 =𝑠

 Inf(𝑆) 

Arc (𝑢, 𝑣)   ⇔  element 𝑣 is in set 𝑢 

Elements 

Sets 

Reduction to max/set cover: 



Influence Maximization 

 Good news: Monotone and submodular 

arg max
𝑆 =𝑠

 Inf(𝑆) 

The greedy algorithm gives approximation ratio:  

≥ 1 − 1 −
1

𝑠

𝑠
> 1 −

1

𝑒
  of opt [NWF ‘78] 

 Practice: Greedy is extensively used in very 
many applications.   

 Theory: Approximation ratio is the best we can 
hope for in ≪ 𝑛𝑠 time [Feige ‘98] 



Greedy Influence Maximization 

Initialize:  𝑆 ← ∅ 

Repeat: 

 𝑢 ← arg max
𝑣
 Inf 𝑆 ∪ 𝑣  

 𝑆 ← 𝑆 ∪ {𝑢} 

Until 𝑆 = 𝑠 

Greedy generates a sequence of nodes  
The approximation guarantee is for each prefix  



Greedy Sequence 

1 

2 
3 

Inf = 9 

Inf = 12 

Inf = 13 



Scalability 

Greedy does not scale well even on a single 
“static” graph – We can not afford much more 
than linear time on very large networks 

 In each step we need to determine the node 
with maximum marginal gain.   

 Exact computation of the cardinality for each 
node is costly (search from each node) 

 



Scalability 

Settle for approximate maximum in each step! 

Relative error affects approximation ratio only 

by a little: ≥ 1 − 1 −
1

𝑠

𝑠
− O(𝜖) times Opt 

 We can use reachability sketches to determine 
the approximate maximum in each step.  

 But… still 𝑂(#𝑒𝑑𝑔𝑒𝑠) per step. 

 

 



SkIM: Sketch Based Influence 
Maximization [CDPW CIKM 2014] 

SkIM Iteration: 

 Compute “sketches” but only to the point of 
determining the node 𝑢 with (approximate) 
maximum influence. 

 Update a residual problem which has selected 
and covered nodes removed.  Other nodes 
have partial sketches that include entries due 
to remaining nodes. 

 
We show SkIM for one instance (similar for multiple instances) 



SkIM: Sketch Based Influence 
Maximization [CDPW CIKM 2014] 

SkIM Iteration (detailed):  Use 𝑘 = 𝑂 𝜖−2 log n  
Sketch building: 
Select new node 𝑣 uniformly, do a reverse search from 𝑣 .   
For each visited node 𝑢:   

 Increment 𝑠𝑘[𝑢]  
  𝐿𝑣 ← 𝐿𝑣 ∪ 𝑢  
 If 𝑠𝑘 𝑢 == 𝑘:  break;  select 𝑢 

If all nodes processed: 𝑢 ← arg max
𝑢
 𝑠𝑘[𝑢] 

 Residual problem update after selecting 𝑢: 
 Do a forward search from 𝑢.  
 Remove all reachable edges and nodes z.   
 For all 𝑢 ∈ 𝐿𝑧, decrement 𝑠𝑘[𝑢] 
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SkIM with 𝑘 = 3 
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SkIM with 𝑘 = 3 
Sampled 

Sketch size 

Inverted sketch 

3 0 

Residual problem 

1 

1 

1 



SkIM correctness 

 Bottom-𝑘 estimator depends only on largest 
value in sketch (threshold value): Highest 
estimate for node with smallest threshold.  SkIM 
computes sketches only to the point that the one 
that would have the highest estimate (lowest 
threshold) is determined. 

 From concentration,  𝑘 = 𝑂 𝜖−2 log n  suffices 
for relative error 1 ± 𝜖 WHP for all nodes in all 
iterations. 

 Can verify that retained sketch entries 
correspond to residual problem. 



SkIM running time (1 instance) 

 Forward searches to remove selected and 
“covered” nodes are linear 𝑂(𝑚).  Sketch 
decrements are “charged” to  decrements 

 Backward searches for sketch building: 
 Each node visit (and scan of in-edges) is charged to a 

new entry in sketch. 
 There are at most 𝑘 entries at any particular time. 
 Entries get removed:  but removals mean that 

statistically “marginal influence” decreases in 
expectation by 1 −

1

𝑘
.   This can happen at most 

𝑘 log 𝑛  times per node. 



SkIM: Sketch Based Influence 
Maximization [CDPW CIKM 2014] 

One instance: 𝑂(𝜖−2𝑚 log2𝑛). 

 

 We use 𝑘 = 𝑂(𝜖−2  log 𝑛) 
 In expectation, each node is visited 𝑂(𝑘 log 𝑛)  

times (total number of sketch entries) 
 So we have 𝑂 𝑚𝑘 log 𝑛 = 𝑂(𝑚𝜖−2 log2 𝑛)  edge 

traversals in total for sketch building 
 We have 𝑂 𝑛𝑘 log 𝑛 = 𝑂(𝑛𝜖−2 log2 𝑛) total 

entries in sketches  



Engineering SkIM 

𝜖−2  log2  𝑛   is a costly !   Is it really expressed in 
running time?  Can we reduce it in practice and 
retain estimation guarantees (confidence) ? 

 One log 𝑛  factor is due to sketch entries 
analysis.  In practice, it does not show up. 

 The rest is due to working with 𝑘 =
𝑂(𝜖−2  log  𝑛).  We can engineer around it. 

 



…Engineering SkIM 

Instead of using a “worst-case”  𝑘 = 𝑂(𝜖−2  log  𝑛), 
we adaptively estimate the error on the maximum 
and increase 𝑘 only as needed. To estimate, we use: 
 Computed exact marginal gain 
 Other partial sketches to determine separation 
We gain when: 

 Max node is unique and separated from rest (can 
reduce the “ 𝜖−2” dependence) 

 Influence distribution is skewed (eliminate “union 
bound”  log  𝑛) 

 When aiming  for specific 𝑠, can increase 𝜖 on the go 



SkIM on multiple instances 

 Sketch building: “Elements” are node-instance 
pairs.  Select randomly a remaining node-
instance pair (𝑣, 𝑖).  Do a reverse search from 
𝑣 in instance 𝑖.  Maintain 𝐿(𝑣,𝑖) of visited 

nodes. 

 Residual problem:  Forward search from 𝑢 in 
each instance. If 𝑣 is reached in instance 𝑖  and 
𝐿(𝑣,𝑖) exists.  Decrement 𝑠𝑘[𝑧] for all 𝑧 ∈ 𝐿(𝑣,𝑖)  



SkIM: Sketch Based Influence 
Maximization [CDPW CIKM 2014] 

One instance: 𝑂(𝜖−2𝑚 log2𝑛). 

ℓ instances: 

    𝑂( |𝐸𝑖|
ℓ
𝑖=1 + 𝜖−2𝑚 log2𝑛). (𝑚 is sum over 

nodes of max indegree in an instance) 

IC model:  ?? Conjecture that a “small number,” 
perhaps  𝑂 𝜖−2 log n ,  instances suffice 

 



[CDPW 2014]  data sets from SNAP 



Use of reachability sketches for influence: 
 Chen, Wang, Young.  Efficient Influence Maximization in Social Networks. 

KDD 2009 
Combined reachability sketches and scalable influence maximization: 
  Cohen, Delling, Pajor, Werneck. Sketch-based Influence Maximization 

and Computation: Scaling up with Guarantees. CIKM 2014 

 IC model: Kempe, Kleinberg, Tardos “Maximizing the spread of influence 
through a social networks”  KDD 2003  

Greedy algorithm for monotone submodular functions: 
 Nemhauser, Wolsey, Fisher. “An analysis of the approximations of 

maximizing submodular set functions” 1978 
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