
Weighted Sampling
for

Scalable Analytics of Large Data Sets

Edith Cohen

1Google, CA USA

2School of Computer Science
Tel Aviv University, Israel

May 24, 2016

Edith Cohen Scalable Weighted Sampling

Data Model

Key value pairs (x ,wx) (users/activity, IP flows/sizes)

“Aggregated presentation:” Data elements (x ,wx) have unique keys

5 7 3 2

key

value

“Unaggregated presentation:” (Streamed or distributed) Elements (x ,w)
of key and value w > 0; wx is the sum of values of elements with key x .

2 2 3 3 2 5

Queries are typically specified over the aggregated view

Edith Cohen Scalable Weighted Sampling

Data Model

Key value pairs (x ,wx) (users/activity, IP flows/sizes)

“Aggregated presentation:” Data elements (x ,wx) have unique keys

5 7 3 2

key

value

“Unaggregated presentation:” (Streamed or distributed) Elements (x ,w)
of key and value w > 0; wx is the sum of values of elements with key x .

2 2 3 3 2 5

Queries are typically specified over the aggregated view

Edith Cohen Scalable Weighted Sampling

Data Model

Key value pairs (x ,wx) (users/activity, IP flows/sizes)

“Aggregated presentation:” Data elements (x ,wx) have unique keys

5 7 3 2

key

value

“Unaggregated presentation:” (Streamed or distributed) Elements (x ,w)
of key and value w > 0; wx is the sum of values of elements with key x .

2 2 3 3 2 5

Queries are typically specified over the aggregated view

Edith Cohen Scalable Weighted Sampling

Data Model

Key value pairs (x ,wx) (users/activity, IP flows/sizes)

“Aggregated presentation:” Data elements (x ,wx) have unique keys

5 7 3 2

key

value

“Unaggregated presentation:” (Streamed or distributed) Elements (x ,w)
of key and value w > 0; wx is the sum of values of elements with key x .

2 2 3 3 2 5

Queries are typically specified over the aggregated view

Edith Cohen Scalable Weighted Sampling

Summary statistics

Q(f ,H) =
X

x2H

f (wx)

Function f (w) � 0 for w � 0 so that f (0) = 0

Selected segment H ⇢ X (domain, subpopulation) from all keys

Example f ():

• Distinct Count f (w) = 1 (# active keys in segment)

• Sum f (w) = w (sum of weights of keys in segment)

• Moments f (w) = wp (p � 0) (distinct p = 0, sum p = 1)

• Capping f (w) = capT = min{T ,w} (distinct T = 1, sum T = +1)

• Threshold f (w) = threshT = Iw�T (T > 0)

Moments wp with p 2 [0, 1] and cap statistics capT with T 2 (0,+1)
parametrize the range between distinct and sum.

Edith Cohen Scalable Weighted Sampling

Summary statistics

Q(f ,H) =
X

x2H

f (wx)

Function f (w) � 0 for w � 0 so that f (0) = 0

Selected segment H ⇢ X (domain, subpopulation) from all keys

Example f ():

• Distinct Count f (w) = 1 (# active keys in segment)

• Sum f (w) = w (sum of weights of keys in segment)

• Moments f (w) = wp (p � 0) (distinct p = 0, sum p = 1)

• Capping f (w) = capT = min{T ,w} (distinct T = 1, sum T = +1)

• Threshold f (w) = threshT = Iw�T (T > 0)

Moments wp with p 2 [0, 1] and cap statistics capT with T 2 (0,+1)
parametrize the range between distinct and sum.

Edith Cohen Scalable Weighted Sampling

Summary statistics

Q(f ,H) =
X

x2H

f (wx)

Function f (w) � 0 for w � 0 so that f (0) = 0

Selected segment H ⇢ X (domain, subpopulation) from all keys

Example f ():

• Distinct Count f (w) = 1 (# active keys in segment)

• Sum f (w) = w (sum of weights of keys in segment)

• Moments f (w) = wp (p � 0) (distinct p = 0, sum p = 1)

• Capping f (w) = capT = min{T ,w} (distinct T = 1, sum T = +1)

• Threshold f (w) = threshT = Iw�T (T > 0)

Moments wp with p 2 [0, 1] and cap statistics capT with T 2 (0,+1)
parametrize the range between distinct and sum.

Edith Cohen Scalable Weighted Sampling

Summary statistics

Q(f ,H) =
X

x2H

f (wx)

Function f (w) � 0 for w � 0 so that f (0) = 0

Selected segment H ⇢ X (domain, subpopulation) from all keys

Example f ():

• Distinct Count f (w) = 1 (# active keys in segment)

• Sum f (w) = w (sum of weights of keys in segment)

• Moments f (w) = wp (p � 0) (distinct p = 0, sum p = 1)

• Capping f (w) = capT = min{T ,w} (distinct T = 1, sum T = +1)

• Threshold f (w) = threshT = Iw�T (T > 0)

Moments wp with p 2 [0, 1] and cap statistics capT with T 2 (0,+1)
parametrize the range between distinct and sum.

Edith Cohen Scalable Weighted Sampling

Summary statistics

Q(f ,H) =
X

x2H

f (wx)

Function f (w) � 0 for w � 0 so that f (0) = 0

Selected segment H ⇢ X (domain, subpopulation) from all keys

Example f ():

• Distinct Count f (w) = 1 (# active keys in segment)

• Sum f (w) = w (sum of weights of keys in segment)

• Moments f (w) = wp (p � 0) (distinct p = 0, sum p = 1)

• Capping f (w) = capT = min{T ,w} (distinct T = 1, sum T = +1)

• Threshold f (w) = threshT = Iw�T (T > 0)

Moments wp with p 2 [0, 1] and cap statistics capT with T 2 (0,+1)
parametrize the range between distinct and sum.

Edith Cohen Scalable Weighted Sampling

Summary statistics

Q(f ,H) =
X

x2H

f (wx)

Function f (w) � 0 for w � 0 so that f (0) = 0

Selected segment H ⇢ X (domain, subpopulation) from all keys

Example f ():

• Distinct Count f (w) = 1 (# active keys in segment)

• Sum f (w) = w (sum of weights of keys in segment)

• Moments f (w) = wp (p � 0) (distinct p = 0, sum p = 1)

• Capping f (w) = capT = min{T ,w} (distinct T = 1, sum T = +1)

• Threshold f (w) = threshT = Iw�T (T > 0)

Moments wp with p 2 [0, 1] and cap statistics capT with T 2 (0,+1)
parametrize the range between distinct and sum.

Edith Cohen Scalable Weighted Sampling

Summary statistics

Q(f ,H) =
X

x2H

f (wx)

Function f (w) � 0 for w � 0 so that f (0) = 0

Selected segment H ⇢ X (domain, subpopulation) from all keys

Example f ():

• Distinct Count f (w) = 1 (# active keys in segment)

• Sum f (w) = w (sum of weights of keys in segment)

• Moments f (w) = wp (p � 0) (distinct p = 0, sum p = 1)

• Capping f (w) = capT = min{T ,w} (distinct T = 1, sum T = +1)

• Threshold f (w) = threshT = Iw�T (T > 0)

Moments wp with p 2 [0, 1] and cap statistics capT with T 2 (0,+1)
parametrize the range between distinct and sum.

Edith Cohen Scalable Weighted Sampling

Example queries Q(f ,H)

135

vv

2

v

9

v

18

vvv

21

vv

4

vv

Segment H: space travelers

Q(count,H) = 4 Q(cap5,H) = 19 Q(thresh10,H) = 2

Segment H: Good guys

Q(count,H) = 4 Q(ln(1 + w),H) ⇡ 12.56

Q: Segment H: Non-human life

Q(count,H) = 3 Q(L22,H) = 769

Edith Cohen Scalable Weighted Sampling

Example queries Q(f ,H)

135

vv

2

v

9

v

18

vvv

21

vv

4

vv

Segment H: space travelers

Q(count,H) = 4 Q(cap5,H) = 19 Q(thresh10,H) = 2

Segment H: Good guys

Q(count,H) = 4 Q(ln(1 + w),H) ⇡ 12.56

Q: Segment H: Non-human life

Q(count,H) = 3 Q(L22,H) = 769

Edith Cohen Scalable Weighted Sampling

Example queries Q(f ,H)

135 v

v

2

v

9 v 18 v

vv

21

vv

4 v

v

Segment H: space travelers

Q(count,H) = 4 Q(cap5,H) = 19 Q(thresh10,H) = 2

Segment H: Good guys

Q(count,H) = 4 Q(ln(1 + w),H) ⇡ 12.56

Q: Segment H: Non-human life

Q(count,H) = 3 Q(L22,H) = 769

Edith Cohen Scalable Weighted Sampling

Example queries Q(f ,H)

135 v

v

2

v

9 v 18 v

vv

21

vv

4 v

v

Segment H: space travelers
Q(count,H) = 4 Q(cap5,H) = 19 Q(thresh10,H) = 2

Segment H: Good guys

Q(count,H) = 4 Q(ln(1 + w),H) ⇡ 12.56

Q: Segment H: Non-human life

Q(count,H) = 3 Q(L22,H) = 769

Edith Cohen Scalable Weighted Sampling

Example queries Q(f ,H)

135 v

v

2

v

9 v 18 v

vv

21

vv

4 v

v

Segment H: space travelers
Q(count,H) = 4 Q(cap5,H) = 19 Q(thresh10,H) = 2

Segment H: Good guys

Q(count,H) = 4 Q(ln(1 + w),H) ⇡ 12.56

Q: Segment H: Non-human life

Q(count,H) = 3 Q(L22,H) = 769

Edith Cohen Scalable Weighted Sampling

Example queries Q(f ,H)

135 vv 2

v

9 v 18 vv

v

21v

v

4 vv

Segment H: space travelers
Q(count,H) = 4 Q(cap5,H) = 19 Q(thresh10,H) = 2

Segment H: Good guys

Q(count,H) = 4 Q(ln(1 + w),H) ⇡ 12.56

Q: Segment H: Non-human life

Q(count,H) = 3 Q(L22,H) = 769

Edith Cohen Scalable Weighted Sampling

Example queries Q(f ,H)

135 vv 2

v

9 v 18 vv

v

21v

v

4 vv

Segment H: space travelers
Q(count,H) = 4 Q(cap5,H) = 19 Q(thresh10,H) = 2

Segment H: Good guys
Q(count,H) = 4 Q(ln(1 + w),H) ⇡ 12.56

Q: Segment H: Non-human life

Q(count,H) = 3 Q(L22,H) = 769

Edith Cohen Scalable Weighted Sampling

Example queries Q(f ,H)

135 vv 2

v

9 v 18 vv

v

21v

v

4 vv

Segment H: space travelers
Q(count,H) = 4 Q(cap5,H) = 19 Q(thresh10,H) = 2

Segment H: Good guys
Q(count,H) = 4 Q(ln(1 + w),H) ⇡ 12.56

Q: Segment H: Non-human life

Q(count,H) = 3 Q(L22,H) = 769

Edith Cohen Scalable Weighted Sampling

Example queries Q(f ,H)

135 vv 2 v 9 v 18 vvv 21vv 4 vv

Segment H: space travelers
Q(count,H) = 4 Q(cap5,H) = 19 Q(thresh10,H) = 2

Segment H: Good guys
Q(count,H) = 4 Q(ln(1 + w),H) ⇡ 12.56

Q: Segment H: Non-human life

Q(count,H) = 3 Q(L22,H) = 769

Edith Cohen Scalable Weighted Sampling

Example queries Q(f ,H)

135 vv 2 v 9 v 18 vvv 21vv 4 vv

Segment H: space travelers
Q(count,H) = 4 Q(cap5,H) = 19 Q(thresh10,H) = 2

Segment H: Good guys
Q(count,H) = 4 Q(ln(1 + w),H) ⇡ 12.56

Q: Segment H: Non-human life
Q(count,H) = 3 Q(L22,H) = 769

Edith Cohen Scalable Weighted Sampling

Challenges

Multi-objective sample (un)aggregated data: For a set of functions F ,
compute a summary/sample from which we can estimate Q(f ,H) for
various f 2 F , H ✓ X .

Weighted sample unaggregated data: For a given f , compute a
summary/sample from which we can estimate Q(f ,H) for various H

Basic: Estimate Q(f ,H) for a given f , H ✓ X

Goals:

• Optimize tradeo↵s of sample quality (statistical guarantees) and size.

• Scalable computation.

Edith Cohen Scalable Weighted Sampling

Challenges

Multi-objective sample (un)aggregated data: For a set of functions F ,
compute a summary/sample from which we can estimate Q(f ,H) for
various f 2 F , H ✓ X .

Weighted sample unaggregated data: For a given f , compute a
summary/sample from which we can estimate Q(f ,H) for various H

Basic: Estimate Q(f ,H) for a given f , H ✓ X

Goals:

• Optimize tradeo↵s of sample quality (statistical guarantees) and size.

• Scalable computation.

Edith Cohen Scalable Weighted Sampling

Challenges

Multi-objective sample (un)aggregated data: For a set of functions F ,
compute a summary/sample from which we can estimate Q(f ,H) for
various f 2 F , H ✓ X .

Weighted sample unaggregated data: For a given f , compute a
summary/sample from which we can estimate Q(f ,H) for various H

Basic: Estimate Q(f ,H) for a given f , H ✓ X

Goals:

• Optimize tradeo↵s of sample quality (statistical guarantees) and size.

• Scalable computation.

Edith Cohen Scalable Weighted Sampling

Scalable Computation

One (or few) passes over the data

Streaming (single sequential pass): Necessary for live dashboards
and when data is discarded. Historically model captured
sequential-access storage devices (tape, disks), Unix pipes.
Streaming model: [Knu68], [MG82], [FM85],. . ., formalized in [AMS99]

Distributed/Parallel aggregation: Process parts of the data
separately and combine small summaries.

Small state

When streaming, the state is what we keep in memory

In distributed aggregation, it is the summary size that is shared

We want state ⌧ number of (distinct) keys

Challenge with unaggregated data: Computing the aggregated view
{(x ,wx)} requires state / number of active keys, which can be very large.

Edith Cohen Scalable Weighted Sampling

Scalable Computation

One (or few) passes over the data

Streaming (single sequential pass): Necessary for live dashboards
and when data is discarded. Historically model captured
sequential-access storage devices (tape, disks), Unix pipes.
Streaming model: [Knu68], [MG82], [FM85],. . ., formalized in [AMS99]

Distributed/Parallel aggregation: Process parts of the data
separately and combine small summaries.

Small state

When streaming, the state is what we keep in memory

In distributed aggregation, it is the summary size that is shared

We want state ⌧ number of (distinct) keys

Challenge with unaggregated data: Computing the aggregated view
{(x ,wx)} requires state / number of active keys, which can be very large.

Edith Cohen Scalable Weighted Sampling

Scalable Computation

One (or few) passes over the data

Streaming (single sequential pass): Necessary for live dashboards
and when data is discarded. Historically model captured
sequential-access storage devices (tape, disks), Unix pipes.
Streaming model: [Knu68], [MG82], [FM85],. . ., formalized in [AMS99]

Distributed/Parallel aggregation: Process parts of the data
separately and combine small summaries.

Small state

When streaming, the state is what we keep in memory

In distributed aggregation, it is the summary size that is shared

We want state ⌧ number of (distinct) keys

Challenge with unaggregated data: Computing the aggregated view
{(x ,wx)} requires state / number of active keys, which can be very large.

Edith Cohen Scalable Weighted Sampling

Talk Overview

Aggregated data sets:

Review the “gold standard” Sample size/ estimation quality
tradeo↵s.
Multi-objective (MO) sampling

• Coordinating samples for di↵erent f 2 F
• MO sampling scheme for all monotone (non-decreasing) f . [Coh15b]

• MO sampling distances from query points. [CCK16]

Unaggregated data sets: How to sample e↵ectively without
aggregation for capping statistics (and more) [Coh15c]

Edith Cohen Scalable Weighted Sampling

Talk Overview

Aggregated data sets:

Review the “gold standard” Sample size/ estimation quality
tradeo↵s.

Multi-objective (MO) sampling
• Coordinating samples for di↵erent f 2 F
• MO sampling scheme for all monotone (non-decreasing) f . [Coh15b]

• MO sampling distances from query points. [CCK16]

Unaggregated data sets: How to sample e↵ectively without
aggregation for capping statistics (and more) [Coh15c]

Edith Cohen Scalable Weighted Sampling

Talk Overview

Aggregated data sets:

Review the “gold standard” Sample size/ estimation quality
tradeo↵s.
Multi-objective (MO) sampling

• Coordinating samples for di↵erent f 2 F
• MO sampling scheme for all monotone (non-decreasing) f . [Coh15b]

• MO sampling distances from query points. [CCK16]

Unaggregated data sets: How to sample e↵ectively without
aggregation for capping statistics (and more) [Coh15c]

Edith Cohen Scalable Weighted Sampling

Talk Overview

Aggregated data sets:

Review the “gold standard” Sample size/ estimation quality
tradeo↵s.
Multi-objective (MO) sampling

• Coordinating samples for di↵erent f 2 F
• MO sampling scheme for all monotone (non-decreasing) f . [Coh15b]

• MO sampling distances from query points. [CCK16]

Unaggregated data sets: How to sample e↵ectively without
aggregation for capping statistics (and more) [Coh15c]

Edith Cohen Scalable Weighted Sampling

Aggregated data: Weighted sampling schemes

Data provided as key value pairs (x ,wx).

Compute a sample Sf of size k from which we can estimate Q(f ,H).

To get good size/quality tradeo↵s, need (roughly) Pr[x 2 Sf] / f (wx):

Poisson Probability Proportional to Size (PPS): Sample keys

independently with px = min{1, kf (wx)P
x f (wx)

}
VarOpt [Cha82, CDL+11]: Dependent PPS for sample size exactly k

Bottom-k/order/weighted reservoir sampling schemes [Ros97, CK07]

foreach key x do // Z [w]: distribution parameterized by w
seed(x) ⇠ Z [f (wx)]

S k keys with smallest seed(x); ⌧ (k + 1)th smallest seed(x)

Sequential Poisson (priority) [Ohl98, DTL07]:
seed(x) ⇠ U[0, 1/f (wx)]

PPS without replacement (ppswor) [Ros72]: seed(x) ⇠ Exp[f (wx)]

Edith Cohen Scalable Weighted Sampling

Aggregated data: Weighted sampling schemes

Data provided as key value pairs (x ,wx).

Compute a sample Sf of size k from which we can estimate Q(f ,H).

To get good size/quality tradeo↵s, need (roughly) Pr[x 2 Sf] / f (wx):

Poisson Probability Proportional to Size (PPS): Sample keys

independently with px = min{1, kf (wx)P
x f (wx)

}
VarOpt [Cha82, CDL+11]: Dependent PPS for sample size exactly k

Bottom-k/order/weighted reservoir sampling schemes [Ros97, CK07]

foreach key x do // Z [w]: distribution parameterized by w
seed(x) ⇠ Z [f (wx)]

S k keys with smallest seed(x); ⌧ (k + 1)th smallest seed(x)

Sequential Poisson (priority) [Ohl98, DTL07]:
seed(x) ⇠ U[0, 1/f (wx)]

PPS without replacement (ppswor) [Ros72]: seed(x) ⇠ Exp[f (wx)]

Edith Cohen Scalable Weighted Sampling

Aggregated data: Weighted sampling schemes

Data provided as key value pairs (x ,wx).

Compute a sample Sf of size k from which we can estimate Q(f ,H).

To get good size/quality tradeo↵s, need (roughly) Pr[x 2 Sf] / f (wx):

Poisson Probability Proportional to Size (PPS): Sample keys

independently with px = min{1, kf (wx)P
x f (wx)

}
VarOpt [Cha82, CDL+11]: Dependent PPS for sample size exactly k

Bottom-k/order/weighted reservoir sampling schemes [Ros97, CK07]

foreach key x do // Z [w]: distribution parameterized by w
seed(x) ⇠ Z [f (wx)]

S k keys with smallest seed(x); ⌧ (k + 1)th smallest seed(x)

Sequential Poisson (priority) [Ohl98, DTL07]:
seed(x) ⇠ U[0, 1/f (wx)]

PPS without replacement (ppswor) [Ros72]: seed(x) ⇠ Exp[f (wx)]

Edith Cohen Scalable Weighted Sampling

Aggregated data: Weighted sampling schemes

Data provided as key value pairs (x ,wx).

Compute a sample Sf of size k from which we can estimate Q(f ,H).

To get good size/quality tradeo↵s, need (roughly) Pr[x 2 Sf] / f (wx):

Poisson Probability Proportional to Size (PPS): Sample keys

independently with px = min{1, kf (wx)P
x f (wx)

}
VarOpt [Cha82, CDL+11]: Dependent PPS for sample size exactly k

Bottom-k/order/weighted reservoir sampling schemes [Ros97, CK07]

foreach key x do // Z [w]: distribution parameterized by w
seed(x) ⇠ Z [f (wx)]

S k keys with smallest seed(x); ⌧ (k + 1)th smallest seed(x)

Sequential Poisson (priority) [Ohl98, DTL07]:
seed(x) ⇠ U[0, 1/f (wx)]

PPS without replacement (ppswor) [Ros72]: seed(x) ⇠ Exp[f (wx)]

Edith Cohen Scalable Weighted Sampling

Aggregated data: Weighted sampling schemes

Data provided as key value pairs (x ,wx).

Compute a sample Sf of size k from which we can estimate Q(f ,H).

To get good size/quality tradeo↵s, need (roughly) Pr[x 2 Sf] / f (wx):

Poisson Probability Proportional to Size (PPS): Sample keys

independently with px = min{1, kf (wx)P
x f (wx)

}
VarOpt [Cha82, CDL+11]: Dependent PPS for sample size exactly k

Bottom-k/order/weighted reservoir sampling schemes [Ros97, CK07]

foreach key x do // Z [w]: distribution parameterized by w
seed(x) ⇠ Z [f (wx)]

S k keys with smallest seed(x); ⌧ (k + 1)th smallest seed(x)

Sequential Poisson (priority) [Ohl98, DTL07]:
seed(x) ⇠ U[0, 1/f (wx)]

PPS without replacement (ppswor) [Ros72]: seed(x) ⇠ Exp[f (wx)]

Edith Cohen Scalable Weighted Sampling

Aggregated data: Estimators for weighted samples

Inverse probability estimator of Q(g ,H) from the sample S [HT52]

px = Pr[x 2 S]: probability that key x is sampled
For each key x , estimate g(wx) by 0 if x 62 S and by g(wx)/px if x 2 S .

Q̂(g ,H) =
X

x2H

ĝ(wx) =
X

x2H\S

g(wx)

px
.

Applies when we can compute px for x 2 S

nonnegative (since g is) unbiased (if g(wx) > 0 =) f (wx) > 0)

Bottom-k samples: px is not available so instead we use

px|⌧ ⌘ Pr[seed(x) < ⌧] = Pr[Z [f (wx)] < ⌧]

Q̂(g ,H) =
X

x2H\S

ĝ(wx | ⌧) , where ĝ(wx | ⌧) = g(wx)

px|⌧
.

How good is this estimate?

Edith Cohen Scalable Weighted Sampling

Aggregated data: Estimators for weighted samples

Inverse probability estimator of Q(g ,H) from the sample S [HT52]

px = Pr[x 2 S]: probability that key x is sampled
For each key x , estimate g(wx) by 0 if x 62 S and by g(wx)/px if x 2 S .

Q̂(g ,H) =
X

x2H

ĝ(wx) =
X

x2H\S

g(wx)

px
.

Applies when we can compute px for x 2 S

nonnegative (since g is) unbiased (if g(wx) > 0 =) f (wx) > 0)

Bottom-k samples: px is not available so instead we use

px|⌧ ⌘ Pr[seed(x) < ⌧] = Pr[Z [f (wx)] < ⌧]

Q̂(g ,H) =
X

x2H\S

ĝ(wx | ⌧) , where ĝ(wx | ⌧) = g(wx)

px|⌧
.

How good is this estimate?

Edith Cohen Scalable Weighted Sampling

Aggregated data: Estimators for weighted samples

Inverse probability estimator of Q(g ,H) from the sample S [HT52]

px = Pr[x 2 S]: probability that key x is sampled
For each key x , estimate g(wx) by 0 if x 62 S and by g(wx)/px if x 2 S .

Q̂(g ,H) =
X

x2H

ĝ(wx) =
X

x2H\S

g(wx)

px
.

Applies when we can compute px for x 2 S

nonnegative (since g is) unbiased (if g(wx) > 0 =) f (wx) > 0)

Bottom-k samples: px is not available so instead we use

px|⌧ ⌘ Pr[seed(x) < ⌧] = Pr[Z [f (wx)] < ⌧]

Q̂(g ,H) =
X

x2H\S

ĝ(wx | ⌧) , where ĝ(wx | ⌧) = g(wx)

px|⌧
.

How good is this estimate?

Edith Cohen Scalable Weighted Sampling

Aggregated data: Estimators for weighted samples

Inverse probability estimator of Q(g ,H) from the sample S [HT52]

px = Pr[x 2 S]: probability that key x is sampled
For each key x , estimate g(wx) by 0 if x 62 S and by g(wx)/px if x 2 S .

Q̂(g ,H) =
X

x2H

ĝ(wx) =
X

x2H\S

g(wx)

px
.

Applies when we can compute px for x 2 S

nonnegative (since g is) unbiased (if g(wx) > 0 =) f (wx) > 0)

Bottom-k samples: px is not available so instead we use

px|⌧ ⌘ Pr[seed(x) < ⌧] = Pr[Z [f (wx)] < ⌧]

Q̂(g ,H) =
X

x2H\S

ĝ(wx | ⌧) , where ĝ(wx | ⌧) = g(wx)

px|⌧
.

How good is this estimate?

Edith Cohen Scalable Weighted Sampling

Aggregated data: Estimators for weighted samples

Inverse probability estimator of Q(g ,H) from the sample S [HT52]

px = Pr[x 2 S]: probability that key x is sampled
For each key x , estimate g(wx) by 0 if x 62 S and by g(wx)/px if x 2 S .

Q̂(g ,H) =
X

x2H

ĝ(wx) =
X

x2H\S

g(wx)

px
.

Applies when we can compute px for x 2 S

nonnegative (since g is) unbiased (if g(wx) > 0 =) f (wx) > 0)

Poisson PPS samples: px = min{1, kf (wx)P
x f (wx)

}
We have wx for sampled keys x 2 S , and the total

P
x f (wx)

=) can compute px and apply estimator.

Bottom-k samples: px is
not available so instead we use

px|⌧ ⌘ Pr[seed(x) < ⌧] = Pr[Z [f (wx)] < ⌧]

Q̂(g ,H) =
X

x2H\S

ĝ(wx | ⌧) , where ĝ(wx | ⌧) = g(wx)

px|⌧
.

How good is this estimate?

Edith Cohen Scalable Weighted Sampling

Aggregated data: Estimators for weighted samples

Inverse probability estimator of Q(g ,H) from the sample S [HT52]

px = Pr[x 2 S]: probability that key x is sampled
For each key x , estimate g(wx) by 0 if x 62 S and by g(wx)/px if x 2 S .

Q̂(g ,H) =
X

x2H

ĝ(wx) =
X

x2H\S

g(wx)

px
.

Applies when we can compute px for x 2 S

nonnegative (since g is) unbiased (if g(wx) > 0 =) f (wx) > 0)

Bottom-k samples: px is not available so instead we use

px|⌧ ⌘ Pr[seed(x) < ⌧] = Pr[Z [f (wx)] < ⌧]

Q̂(g ,H) =
X

x2H\S

ĝ(wx | ⌧) , where ĝ(wx | ⌧) = g(wx)

px|⌧
.

How good is this estimate?

Edith Cohen Scalable Weighted Sampling

Aggregated data: Estimators for weighted samples

Inverse probability estimator of Q(g ,H) from the sample S [HT52]

px = Pr[x 2 S]: probability that key x is sampled
For each key x , estimate g(wx) by 0 if x 62 S and by g(wx)/px if x 2 S .

Q̂(g ,H) =
X

x2H

ĝ(wx) =
X

x2H\S

g(wx)

px
.

Applies when we can compute px for x 2 S

nonnegative (since g is) unbiased (if g(wx) > 0 =) f (wx) > 0)

Bottom-k samples: px is not available so instead we use

px|⌧ ⌘ Pr[seed(x) < ⌧] = Pr[Z [f (wx)] < ⌧]

The inclusion probability of x conditioned on randomization of all other
keys:⌧ is the kth smallest seed(y) for y 6= x ; x 2 S () seed(x) < ⌧

For ppswor Z [y] ⌘ Exp[y] : px|⌧ = 1� e�f (wx)⌧

For priority Z [y] ⌘ U[0, 1/y] : px|⌧ = min{f (wx)⌧, 1}

Q̂(g ,H) =
X

x2H\S

ĝ(wx | ⌧) , where ĝ(wx | ⌧) = g(wx)

px|⌧
.

How good is this estimate?

Edith Cohen Scalable Weighted Sampling

Aggregated data: Estimators for weighted samples

Inverse probability estimator of Q(g ,H) from the sample S [HT52]

px = Pr[x 2 S]: probability that key x is sampled
For each key x , estimate g(wx) by 0 if x 62 S and by g(wx)/px if x 2 S .

Q̂(g ,H) =
X

x2H

ĝ(wx) =
X

x2H\S

g(wx)

px
.

Applies when we can compute px for x 2 S

nonnegative (since g is) unbiased (if g(wx) > 0 =) f (wx) > 0)

Bottom-k samples: px is not available so instead we use

px|⌧ ⌘ Pr[seed(x) < ⌧] = Pr[Z [f (wx)] < ⌧]

Q̂(g ,H) =
X

x2H\S

ĝ(wx | ⌧) , where ĝ(wx | ⌧) = g(wx)

px|⌧
.

How good is this estimate?

Edith Cohen Scalable Weighted Sampling

Aggregated data: Estimators for weighted samples

Inverse probability estimator of Q(g ,H) from the sample S [HT52]

px = Pr[x 2 S]: probability that key x is sampled
For each key x , estimate g(wx) by 0 if x 62 S and by g(wx)/px if x 2 S .

Q̂(g ,H) =
X

x2H

ĝ(wx) =
X

x2H\S

g(wx)

px
.

Applies when we can compute px for x 2 S

nonnegative (since g is) unbiased (if g(wx) > 0 =) f (wx) > 0)

Bottom-k samples: px is not available so instead we use

px|⌧ ⌘ Pr[seed(x) < ⌧] = Pr[Z [f (wx)] < ⌧]

Q̂(g ,H) =
X

x2H\S

ĝ(wx | ⌧) , where ĝ(wx | ⌧) = g(wx)

px|⌧
.

How good is this estimate?
Edith Cohen Scalable Weighted Sampling

Aggregated: Estimate quality when g() = f ()

Let q ⌘ q(f ,H) be the fraction of the statistics f due to segment H:

q =
Q(f ,H)

Q(f ,X)
=

P
x2H f (wx)P
x f (wx)

.

bound on the Coe�cient of Variation (CV) (relative standard deviation)
q
var [Q̂(f ,H)]

Q(f ,H)
 1p

q(k � 1)

+concentration: sample size k = c✏�2/q then prob. of rel. error > ✏
decreases exponentially in c .

Edith Cohen Scalable Weighted Sampling

Aggregated: Estimate quality when g() = f ()

Let q ⌘ q(f ,H) be the fraction of the statistics f due to segment H:

q =
Q(f ,H)

Q(f ,X)
=

P
x2H f (wx)P
x f (wx)

.

bound on the Coe�cient of Variation (CV) (relative standard deviation)
q
var [Q̂(f ,H)]

Q(f ,H)
 1p

q(k � 1)

+concentration: sample size k = c✏�2/q then prob. of rel. error > ✏
decreases exponentially in c .

Edith Cohen Scalable Weighted Sampling

Aggregated: Estimate quality when g() = f ()

Let q ⌘ q(f ,H) be the fraction of the statistics f due to segment H:

q =
Q(f ,H)

Q(f ,X)
=

P
x2H f (wx)P
x f (wx)

.

bound on the Coe�cient of Variation (CV) (relative standard deviation)
q
var [Q̂(f ,H)]

Q(f ,H)
 1p

q(k � 1)

+concentration: sample size k = c✏�2/q then prob. of rel. error > ✏
decreases exponentially in c .

Edith Cohen Scalable Weighted Sampling

Aggregated: Interpreting the CV bound for g() = f ()

CV (relative standard deviation) bound
q
var [Q̂(f ,H)]

Q(f ,H)
 1p

q(k � 1)

=) If we want CV  ✏ on segments H that have q(f ,H) � q fraction
of the total f statistics, we need a sample of size k = ✏�2/q

!! This is the optimal size/quality tradeo↵ for sampling (on average over
segments with proportion q)

1,567,856 22 89 121 2

For CV ✏  10% and q � 0.1% =) Sample size k = 105.

. . . usually k ⌧ total number of active keys.

Edith Cohen Scalable Weighted Sampling

Aggregated: Interpreting the CV bound for g() = f ()

CV (relative standard deviation) bound
q
var [Q̂(f ,H)]

Q(f ,H)
 1p

q(k � 1)

=) If we want CV  ✏ on segments H that have q(f ,H) � q fraction
of the total f statistics, we need a sample of size k = ✏�2/q

!! This is the optimal size/quality tradeo↵ for sampling (on average over
segments with proportion q)

1,567,856 22 89 121 2

For CV ✏  10% and q � 0.1% =) Sample size k = 105.

. . . usually k ⌧ total number of active keys.

Edith Cohen Scalable Weighted Sampling

Aggregated: Interpreting the CV bound for g() = f ()

CV (relative standard deviation) bound
q
var [Q̂(f ,H)]

Q(f ,H)
 1p

q(k � 1)

=) If we want CV  ✏ on segments H that have q(f ,H) � q fraction
of the total f statistics, we need a sample of size k = ✏�2/q

!! This is the optimal size/quality tradeo↵ for sampling (on average over
segments with proportion q)

1,567,856 22 89 121 2

For CV ✏  10% and q � 0.1% =) Sample size k = 105.

. . . usually k ⌧ total number of active keys.

Edith Cohen Scalable Weighted Sampling

Aggregated: Interpreting the CV bound for g() = f ()

CV (relative standard deviation) bound
q
var [Q̂(f ,H)]

Q(f ,H)
 1p

q(k � 1)

=) If we want CV  ✏ on segments H that have q(f ,H) � q fraction
of the total f statistics, we need a sample of size k = ✏�2/q

!! This is the optimal size/quality tradeo↵ for sampling (on average over
segments with proportion q)

1,567,856 22 89 121 2

For CV ✏  10% and q � 0.1% =) Sample size k = 105.

. . . usually k ⌧ total number of active keys.

Edith Cohen Scalable Weighted Sampling

Aggregated: Estimate quality when g() 6= f ()

Sample with respect to f , but estimate Q(g ,H)

Disparity between g , f :

⇢(g , f) = max
w>0

g(w)

f (w)
max
w>0

f (w)

g(w)
.

Disparity is always ⇢(g , f) � 1.

We have ⇢(g , f) = 1 () g = cf for some c .

Lemma

CV of Q̂(g ,H) is at most (⇢
q(k�1))

0.5.

Edith Cohen Scalable Weighted Sampling

Aggregated: Estimate quality when g() 6= f ()

Sample with respect to f , but estimate Q(g ,H)

Disparity between g , f :

⇢(g , f) = max
w>0

g(w)

f (w)
max
w>0

f (w)

g(w)
.

Disparity is always ⇢(g , f) � 1.

We have ⇢(g , f) = 1 () g = cf for some c .

Lemma

CV of Q̂(g ,H) is at most (⇢
q(k�1))

0.5.

Edith Cohen Scalable Weighted Sampling

Aggregated: Estimate quality when g() 6= f ()

Sample with respect to f , but estimate Q(g ,H)

Disparity between g , f :

⇢(g , f) = max
w>0

g(w)

f (w)
max
w>0

f (w)

g(w)
.

Disparity is always ⇢(g , f) � 1.

We have ⇢(g , f) = 1 () g = cf for some c .

Lemma

CV of Q̂(g ,H) is at most (⇢
q(k�1))

0.5.

Edith Cohen Scalable Weighted Sampling

Aggregated: Estimate quality when g() 6= f ()

Sample with respect to f , but estimate Q(g ,H)

Disparity between g , f :

⇢(g , f) = max
w>0

g(w)

f (w)
max
w>0

f (w)

g(w)
.

Disparity is always ⇢(g , f) � 1.

We have ⇢(g , f) = 1 () g = cf for some c .

Lemma

CV of Q̂(g ,H) is at most (⇢
q(k�1))

0.5.

Edith Cohen Scalable Weighted Sampling

Aggregated: Multi-Objective (MO) Samples

With a weighted sample of size k = ✏�2 with respect to f , we estimate
Q(f ,H) with CV  ✏/

p
q.

But quality guarantee for Q(g ,H) degrades with disparity ⇢(f , g).

What if we want quality guarantee of CV  ✏/
p
q for several f 2 F ?

Naive solution: Use |F | independent samples Sf for f 2 F . Size is |F |✏�2.
Can we do better ?

Multi-objective samples [CKS09]

Approach

Make the dedicated samples for di↵erent f 2 F as similar as possible.
Sample Coordination [BEJ72, Coh97]: Similar samples Sf for similar f .

Work with the union sample, estimate using the inclusion
probabilities in at least one dedicated sample.

Edith Cohen Scalable Weighted Sampling

Aggregated: Multi-Objective (MO) Samples

With a weighted sample of size k = ✏�2 with respect to f , we estimate
Q(f ,H) with CV  ✏/

p
q.

But quality guarantee for Q(g ,H) degrades with disparity ⇢(f , g).

What if we want quality guarantee of CV  ✏/
p
q for several f 2 F ?

Naive solution: Use |F | independent samples Sf for f 2 F . Size is |F |✏�2.

Can we do better ?

Multi-objective samples [CKS09]

Approach

Make the dedicated samples for di↵erent f 2 F as similar as possible.
Sample Coordination [BEJ72, Coh97]: Similar samples Sf for similar f .

Work with the union sample, estimate using the inclusion
probabilities in at least one dedicated sample.

Edith Cohen Scalable Weighted Sampling

Aggregated: Multi-Objective (MO) Samples

With a weighted sample of size k = ✏�2 with respect to f , we estimate
Q(f ,H) with CV  ✏/

p
q.

But quality guarantee for Q(g ,H) degrades with disparity ⇢(f , g).

What if we want quality guarantee of CV  ✏/
p
q for several f 2 F ?

Naive solution: Use |F | independent samples Sf for f 2 F . Size is |F |✏�2.
Can we do better ?

Multi-objective samples [CKS09]

Approach

Make the dedicated samples for di↵erent f 2 F as similar as possible.
Sample Coordination [BEJ72, Coh97]: Similar samples Sf for similar f .

Work with the union sample, estimate using the inclusion
probabilities in at least one dedicated sample.

Edith Cohen Scalable Weighted Sampling

Aggregated: Multi-Objective (MO) Samples

With a weighted sample of size k = ✏�2 with respect to f , we estimate
Q(f ,H) with CV  ✏/

p
q.

But quality guarantee for Q(g ,H) degrades with disparity ⇢(f , g).

What if we want quality guarantee of CV  ✏/
p
q for several f 2 F ?

Naive solution: Use |F | independent samples Sf for f 2 F . Size is |F |✏�2.
Can we do better ?

Multi-objective samples [CKS09]

Approach

Make the dedicated samples for di↵erent f 2 F as similar as possible.
Sample Coordination [BEJ72, Coh97]: Similar samples Sf for similar f .

Work with the union sample, estimate using the inclusion
probabilities in at least one dedicated sample.

Edith Cohen Scalable Weighted Sampling

Aggregated: Multi-Objective (MO) Samples

With a weighted sample of size k = ✏�2 with respect to f , we estimate
Q(f ,H) with CV  ✏/

p
q.

But quality guarantee for Q(g ,H) degrades with disparity ⇢(f , g).

What if we want quality guarantee of CV  ✏/
p
q for several f 2 F ?

Naive solution: Use |F | independent samples Sf for f 2 F . Size is |F |✏�2.
Can we do better ?

Multi-objective samples [CKS09]

Approach

Make the dedicated samples for di↵erent f 2 F as similar as possible.
Sample Coordination [BEJ72, Coh97]: Similar samples Sf for similar f .

Work with the union sample, estimate using the inclusion
probabilities in at least one dedicated sample.

Edith Cohen Scalable Weighted Sampling

Multi-Objective (MO) Samples

Multi-objective sample SF [CKS09]

SF =
S

f2F Sf is the union of coordinated bottom-k (or pps)
samples for f 2 F
E.g. with priority sampling, draw ux ⇠ U[0, 1] once, and for Sf use
seed(x) = ux/f (wx).

For estimation, use px = Pr[x 2 SF] (inclusion in at least one
dedicated Sf)

• Estimates have CV  ✏/
p
q for Q(f ,H) for all f 2 F .

• Size typically ⌧ |F |✏�2 (but is as small as possible).

Edith Cohen Scalable Weighted Sampling

Multi-Objective (MO) Samples

Multi-objective sample SF [CKS09]

SF =
S

f2F Sf is the union of coordinated bottom-k (or pps)
samples for f 2 F
E.g. with priority sampling, draw ux ⇠ U[0, 1] once, and for Sf use
seed(x) = ux/f (wx).

For estimation, use px = Pr[x 2 SF] (inclusion in at least one
dedicated Sf)

• Estimates have CV  ✏/
p
q for Q(f ,H) for all f 2 F .

• Size typically ⌧ |F |✏�2 (but is as small as possible).

Edith Cohen Scalable Weighted Sampling

Multi-Objective (MO) Samples

Multi-objective sample SF [CKS09]

SF =
S

f2F Sf is the union of coordinated bottom-k (or pps)
samples for f 2 F
E.g. with priority sampling, draw ux ⇠ U[0, 1] once, and for Sf use
seed(x) = ux/f (wx).

For estimation, use px = Pr[x 2 SF] (inclusion in at least one
dedicated Sf)

• Estimates have CV  ✏/
p
q for Q(f ,H) for all f 2 F .

• Size typically ⌧ |F |✏�2 (but is as small as possible).

Edith Cohen Scalable Weighted Sampling

Multi-Objective (MO) Samples

Multi-objective sample SF [CKS09]

SF =
S

f2F Sf is the union of coordinated bottom-k (or pps)
samples for f 2 F
E.g. with priority sampling, draw ux ⇠ U[0, 1] once, and for Sf use
seed(x) = ux/f (wx).

For estimation, use px = Pr[x 2 SF] (inclusion in at least one
dedicated Sf)

• Estimates have CV  ✏/
p
q for Q(f ,H) for all f 2 F .

• Size typically ⌧ |F |✏�2 (but is as small as possible).

Edith Cohen Scalable Weighted Sampling

Multi-objective Priority (sequential Poisson) sampling

x
wx 135 2 9 18 21 4 11 4 2

Count 1 1 1 1 1 1 1 1 1
cap5(wx) 5 2 5 5 5 4 5 4 2
thresh10 1 0 0 1 1 0 1 0 0

ux 0.52 0.24 0.76 0.90 0.14 0.32 0.44 0.07 0.82
ux

thresh10(wx)
0.52 1 1 0.90 0.14 1 0.44 1 1

ux
cap5(wx)

0.104 0.120 0.152 0.18 0.064 0.080 0.088 0.0175 0.41

For k = 3, the MO sample for F = {count, thresh10, cap5} is:

Edith Cohen Scalable Weighted Sampling

Multi-objective Priority (sequential Poisson) sampling

x
wx 135 2 9 18 21 4 11 4 2

Count 1 1 1 1 1 1 1 1 1
cap5(wx) 5 2 5 5 5 4 5 4 2
thresh10 1 0 0 1 1 0 1 0 0

ux 0.52 0.24 0.76 0.90 0.14 0.32 0.44 0.07 0.82

ux
thresh10(wx)

0.52 1 1 0.90 0.14 1 0.44 1 1
ux

cap5(wx)
0.104 0.120 0.152 0.18 0.064 0.080 0.088 0.0175 0.41

For k = 3, the MO sample for F = {count, thresh10, cap5} is:

Edith Cohen Scalable Weighted Sampling

Multi-objective Priority (sequential Poisson) sampling

x
wx 135 2 9 18 21 4 11 4 2

Count 1 1 1 1 1 1 1 1 1
cap5(wx) 5 2 5 5 5 4 5 4 2
thresh10 1 0 0 1 1 0 1 0 0

ux 0.52 0.24 0.76 0.90 0.14 0.32 0.44 0.07 0.82
ux

thresh10(wx)
0.52 1 1 0.90 0.14 1 0.44 1 1

ux
cap5(wx)

0.104 0.120 0.152 0.18 0.064 0.080 0.088 0.0175 0.41

For k = 3, the MO sample for F = {count, thresh10, cap5} is:

Edith Cohen Scalable Weighted Sampling

Multi-objective Priority (sequential Poisson) sampling

x
wx 135 2 9 18 21 4 11 4 2

Count 1 1 1 1 1 1 1 1 1
cap5(wx) 5 2 5 5 5 4 5 4 2
thresh10 1 0 0 1 1 0 1 0 0

ux 0.52 0.24 0.76 0.90 0.14 0.32 0.44 0.07 0.82
ux

thresh10(wx)
0.52 1 1 0.90 0.14 1 0.44 1 1

ux
cap5(wx)

0.104 0.120 0.152 0.18 0.064 0.080 0.088 0.0175 0.41

For k = 3, the MO sample for F = {count, thresh10, cap5} is:

Edith Cohen Scalable Weighted Sampling

MO Sample for all monotone functions

What can we say about MO sampling the set M of all monotone
non-decreasing functions of wx ?

M includes all moment, capping, and threshold functions . . .

Theorem [Coh15b]

Size: E[|SM |]  ✏�2ln n, where n number of keys.

Computation: SM and inclusion probabilities used for estimation can
be computed using O(n log ✏�1) operations.

Tight lower bound: When keys have distinct weights, any sample
providing these statistical guarantees has size ⌦(✏�2 ln n). Enough to
look at thresh functions (threshT (x) = 1 if x � T and 0 otherwise)

Sampling scheme builds on a surprising relation to computing
All-Distances sketches [Coh97, Coh15a])

Edith Cohen Scalable Weighted Sampling

MO Sample for all monotone functions

What can we say about MO sampling the set M of all monotone
non-decreasing functions of wx ?
M includes all moment, capping, and threshold functions . . .

Theorem [Coh15b]

Size: E[|SM |]  ✏�2ln n, where n number of keys.

Computation: SM and inclusion probabilities used for estimation can
be computed using O(n log ✏�1) operations.

Tight lower bound: When keys have distinct weights, any sample
providing these statistical guarantees has size ⌦(✏�2 ln n). Enough to
look at thresh functions (threshT (x) = 1 if x � T and 0 otherwise)

Sampling scheme builds on a surprising relation to computing
All-Distances sketches [Coh97, Coh15a])

Edith Cohen Scalable Weighted Sampling

MO Sample for all monotone functions

What can we say about MO sampling the set M of all monotone
non-decreasing functions of wx ?
M includes all moment, capping, and threshold functions . . .

Theorem [Coh15b]

Size: E[|SM |]  ✏�2ln n, where n number of keys.

Computation: SM and inclusion probabilities used for estimation can
be computed using O(n log ✏�1) operations.

Tight lower bound: When keys have distinct weights, any sample
providing these statistical guarantees has size ⌦(✏�2 ln n). Enough to
look at thresh functions (threshT (x) = 1 if x � T and 0 otherwise)

Sampling scheme builds on a surprising relation to computing
All-Distances sketches [Coh97, Coh15a])

Edith Cohen Scalable Weighted Sampling

MO Sample for all monotone functions

What can we say about MO sampling the set M of all monotone
non-decreasing functions of wx ?
M includes all moment, capping, and threshold functions . . .

Theorem [Coh15b]

Size: E[|SM |]  ✏�2ln n, where n number of keys.

Computation: SM and inclusion probabilities used for estimation can
be computed using O(n log ✏�1) operations.

Tight lower bound: When keys have distinct weights, any sample
providing these statistical guarantees has size ⌦(✏�2 ln n). Enough to
look at thresh functions (threshT (x) = 1 if x � T and 0 otherwise)

Sampling scheme builds on a surprising relation to computing
All-Distances sketches [Coh97, Coh15a])

Edith Cohen Scalable Weighted Sampling

MO Sample for all monotone functions

What can we say about MO sampling the set M of all monotone
non-decreasing functions of wx ?
M includes all moment, capping, and threshold functions . . .

Theorem [Coh15b]

Size: E[|SM |]  ✏�2ln n, where n number of keys.

Computation: SM and inclusion probabilities used for estimation can
be computed using O(n log ✏�1) operations.

Tight lower bound: When keys have distinct weights, any sample
providing these statistical guarantees has size ⌦(✏�2 ln n). Enough to
look at thresh functions (threshT (x) = 1 if x � T and 0 otherwise)

Sampling scheme builds on a surprising relation to computing
All-Distances sketches [Coh97, Coh15a])

Edith Cohen Scalable Weighted Sampling

MO Sample for all monotone functions

What can we say about MO sampling the set M of all monotone
non-decreasing functions of wx ?
M includes all moment, capping, and threshold functions . . .

Theorem [Coh15b]

Size: E[|SM |]  ✏�2ln n, where n number of keys.

Computation: SM and inclusion probabilities used for estimation can
be computed using O(n log ✏�1) operations.

Tight lower bound: When keys have distinct weights, any sample
providing these statistical guarantees has size ⌦(✏�2 ln n). Enough to
look at thresh functions (threshT (x) = 1 if x � T and 0 otherwise)

Sampling scheme builds on a surprising relation to computing
All-Distances sketches [Coh97, Coh15a])

Edith Cohen Scalable Weighted Sampling

MO Sample for all monotone functions

What can we say about MO sampling the set M of all monotone
non-decreasing functions of wx ?
M includes all moment, capping, and threshold functions . . .

Theorem [Coh15b]

Size: E[|SM |]  ✏�2ln n, where n number of keys.

Computation: SM and inclusion probabilities used for estimation can
be computed using O(n log ✏�1) operations.

Tight lower bound: When keys have distinct weights, any sample
providing these statistical guarantees has size ⌦(✏�2 ln n). Enough to
look at thresh functions (threshT (x) = 1 if x � T and 0 otherwise)

Sampling scheme builds on a surprising relation to computing
All-Distances sketches [Coh97, Coh15a])

Edith Cohen Scalable Weighted Sampling

MO Sample for single-source distances

Set U of points in a metric space M.
Each point q defines fq(y) ⌘ dqy , for all y 2 M.

q

Q(fq,H) =
P

y2H\U dqy

Theorem

[?] For any M, U ⇢ M:

The MO sample of fq for all q 2 M has size O(✏�2).

The sampling scheme uses O(|U|) pairwise distance computations.

Edith Cohen Scalable Weighted Sampling

MO Sample for single-source distances

Set U of points in a metric space M.
Each point q defines fq(y) ⌘ dqy , for all y 2 M.

q

Q(fq,H) =
P

y2H\U dqy

Theorem

[?] For any M, U ⇢ M:

The MO sample of fq for all q 2 M has size O(✏�2).

The sampling scheme uses O(|U|) pairwise distance computations.

Edith Cohen Scalable Weighted Sampling

MO Sample for single-source distances

Set U of points in a metric space M.
Each point q defines fq(y) ⌘ dqy , for all y 2 M.

q

Q(fq,H) =
P

y2H\U dqy

Theorem

[?] For any M, U ⇢ M:

The MO sample of fq for all q 2 M has size O(✏�2).

The sampling scheme uses O(|U|) pairwise distance computations.

Edith Cohen Scalable Weighted Sampling

Talk Overview

Aggregated data sets: Review the “gold standard” Sample size/
estimation quality tradeo↵s.

Multi-objective (MO) sampling
• Coordinating samples for di↵erent f 2 F
• MO sampling scheme for all monotone (non-decreasing) f . [Coh15b]

• MO sampling distances from query points. [CCK16]

Unaggregated data sets: How to sample e↵ectively without
aggregation for capping statistics (and more) [Coh15c]

Edith Cohen Scalable Weighted Sampling

Summary: Aggregated data “gold standard” sampling

8f () � 0, with a weighted sample of size k with respect to f (wx):

8 segment H: Q̂(f ,H) has CV 
q

1
q(f ,H)k .

8 g() � 0, H: Q̂(g ,H) has CV 
q

⇢(g ,f)
q(g ,H)k

With a multi-objective sample of size  k ln n:

8 monotone f � 0, segment H: Q̂(f ,H) has CV 
q

1
q(f ,H)k .

Desirables with unaggregated data (and wx ⌘
P

elements (x,w) w):

Computation: One or two passes, state / k (no aggregated view!)

Quality: Sample size/estimate quality tradeo↵ near gold standard.

Edith Cohen Scalable Weighted Sampling

Summary: Aggregated data “gold standard” sampling

8f () � 0, with a weighted sample of size k with respect to f (wx):

8 segment H: Q̂(f ,H) has CV 
q

1
q(f ,H)k .

8 g() � 0, H: Q̂(g ,H) has CV 
q

⇢(g ,f)
q(g ,H)k

With a multi-objective sample of size  k ln n:

8 monotone f � 0, segment H: Q̂(f ,H) has CV 
q

1
q(f ,H)k .

Desirables with unaggregated data (and wx ⌘
P

elements (x,w) w):

Computation: One or two passes, state / k (no aggregated view!)

Quality: Sample size/estimate quality tradeo↵ near gold standard.

Edith Cohen Scalable Weighted Sampling

Summary: Aggregated data “gold standard” sampling

8f () � 0, with a weighted sample of size k with respect to f (wx):

8 segment H: Q̂(f ,H) has CV 
q

1
q(f ,H)k .

8 g() � 0, H: Q̂(g ,H) has CV 
q

⇢(g ,f)
q(g ,H)k

With a multi-objective sample of size  k ln n:

8 monotone f � 0, segment H: Q̂(f ,H) has CV 
q

1
q(f ,H)k .

Desirables with unaggregated data (and wx ⌘
P

elements (x,w) w):

Computation: One or two passes, state / k (no aggregated view!)

Quality: Sample size/estimate quality tradeo↵ near gold standard.

Edith Cohen Scalable Weighted Sampling

Application of capping statistics: Online advertising

The first few impressions of the same ad per user are more e↵ective than
later ones (diminishing return). Advertisers therefore specify

A segment of users (based on geography, demographics, other)

Cap T on the number of impressions per user per time period.

1,567,856 22 89 121 2

Q: targeted segment: galactic-scale travelers cap: 5
Answer (number of qualifying impressions): 15

Q: targeted segment: non-human intelligent life cap: 3
Answer (number of qualifying impressions): 8

Edith Cohen Scalable Weighted Sampling

Application of capping statistics: Online advertising

The first few impressions of the same ad per user are more e↵ective than
later ones (diminishing return). Advertisers therefore specify

A segment of users (based on geography, demographics, other)

Cap T on the number of impressions per user per time period.

1,567,856 22 89 121 2

Q: targeted segment: galactic-scale travelers cap: 5
Answer (number of qualifying impressions): 15

Q: targeted segment: non-human intelligent life cap: 3
Answer (number of qualifying impressions): 8

Edith Cohen Scalable Weighted Sampling

Application of capping statistics: Online advertising

The first few impressions of the same ad per user are more e↵ective than
later ones (diminishing return). Advertisers therefore specify

A segment of users (based on geography, demographics, other)

Cap T on the number of impressions per user per time period.

1,567,856 22 89 121 2

Q: targeted segment: galactic-scale travelers cap: 5

Answer (number of qualifying impressions): 15

Q: targeted segment: non-human intelligent life cap: 3
Answer (number of qualifying impressions): 8

Edith Cohen Scalable Weighted Sampling

Application of capping statistics: Online advertising

The first few impressions of the same ad per user are more e↵ective than
later ones (diminishing return). Advertisers therefore specify

A segment of users (based on geography, demographics, other)

Cap T on the number of impressions per user per time period.

1,567,856 22 89 121 2

Q: targeted segment: galactic-scale travelers cap: 5
Answer (number of qualifying impressions): 15

Q: targeted segment: non-human intelligent life cap: 3
Answer (number of qualifying impressions): 8

Edith Cohen Scalable Weighted Sampling

Application of capping statistics: Online advertising

The first few impressions of the same ad per user are more e↵ective than
later ones (diminishing return). Advertisers therefore specify

A segment of users (based on geography, demographics, other)

Cap T on the number of impressions per user per time period.

1,567,856 22 89 121 2

Q: targeted segment: galactic-scale travelers cap: 5
Answer (number of qualifying impressions): 15

Q: targeted segment: non-human intelligent life cap: 3

Answer (number of qualifying impressions): 8

Edith Cohen Scalable Weighted Sampling

Application of capping statistics: Online advertising

The first few impressions of the same ad per user are more e↵ective than
later ones (diminishing return). Advertisers therefore specify

A segment of users (based on geography, demographics, other)

Cap T on the number of impressions per user per time period.

1,567,856 22 89 121 2

Q: targeted segment: galactic-scale travelers cap: 5
Answer (number of qualifying impressions): 15

Q: targeted segment: non-human intelligent life cap: 3
Answer (number of qualifying impressions): 8

Edith Cohen Scalable Weighted Sampling

... Frequency Capping in Online advertising

Advertisers specify:

A segment H of users (based on geography, demographics, other)

A cap T on the number of impressions per user per time period.

Campaign planning is interactive. Staging tools use past data to predict
the number Q(capT ,H) of qualifying impressions.

Data is “unaggregated:” Impressions for same user come from
diverse sources (devices, apps, times)

=) Need quick estimates Q̂(capT ,H) from a summary that is
computed e�ciently over the unaggregated data set.

Edith Cohen Scalable Weighted Sampling

... Frequency Capping in Online advertising

Advertisers specify:

A segment H of users (based on geography, demographics, other)

A cap T on the number of impressions per user per time period.

Campaign planning is interactive. Staging tools use past data to predict
the number Q(capT ,H) of qualifying impressions.

Data is “unaggregated:” Impressions for same user come from
diverse sources (devices, apps, times)

=) Need quick estimates Q̂(capT ,H) from a summary that is
computed e�ciently over the unaggregated data set.

Edith Cohen Scalable Weighted Sampling

... Frequency Capping in Online advertising

Advertisers specify:

A segment H of users (based on geography, demographics, other)

A cap T on the number of impressions per user per time period.

Campaign planning is interactive. Staging tools use past data to predict
the number Q(capT ,H) of qualifying impressions.

Data is “unaggregated:” Impressions for same user come from
diverse sources (devices, apps, times)

=) Need quick estimates Q̂(capT ,H) from a summary that is
computed e�ciently over the unaggregated data set.

Edith Cohen Scalable Weighted Sampling

Toolbox for frequency functions on unaggregated streams

Deterministic algorithms: Misra Gries: [MG82] Space saving [MAEA05]

for heavy hitters

Random linear projections (linear sketches): Project vector of key
values to a vector with logarithmic dimension. JL transform [JL84]

and stable distributions [Ind01] for frequency moments p 2 [0, 2].

Sampling-based : Distinct Reservoir Sampling [Knu68] and MinHash
sketches [FM85, Coh97] (distinct statistics), Sample and Hold
[GM98, EV02, CDK+14] (sum statistics)

No e↵ective solutions for general capping statistics.

Edith Cohen Scalable Weighted Sampling

Toolbox for frequency functions on unaggregated streams

Deterministic algorithms: Misra Gries: [MG82] Space saving [MAEA05]

for heavy hitters

Random linear projections (linear sketches): Project vector of key
values to a vector with logarithmic dimension. JL transform [JL84]

and stable distributions [Ind01] for frequency moments p 2 [0, 2].

Sampling-based : Distinct Reservoir Sampling [Knu68] and MinHash
sketches [FM85, Coh97] (distinct statistics), Sample and Hold
[GM98, EV02, CDK+14] (sum statistics)

No e↵ective solutions for general capping statistics.

Edith Cohen Scalable Weighted Sampling

Toolbox for frequency functions on unaggregated streams

Deterministic algorithms: Misra Gries: [MG82] Space saving [MAEA05]

for heavy hitters

Random linear projections (linear sketches): Project vector of key
values to a vector with logarithmic dimension. JL transform [JL84]

and stable distributions [Ind01] for frequency moments p 2 [0, 2].

Sampling-based : Distinct Reservoir Sampling [Knu68] and MinHash
sketches [FM85, Coh97] (distinct statistics), Sample and Hold
[GM98, EV02, CDK+14] (sum statistics)

No e↵ective solutions for general capping statistics.

Edith Cohen Scalable Weighted Sampling

Toolbox for frequency functions on unaggregated streams

Deterministic algorithms: Misra Gries: [MG82] Space saving [MAEA05]

for heavy hitters

Random linear projections (linear sketches): Project vector of key
values to a vector with logarithmic dimension. JL transform [JL84]

and stable distributions [Ind01] for frequency moments p 2 [0, 2].

Sampling-based : Distinct Reservoir Sampling [Knu68] and MinHash
sketches [FM85, Coh97] (distinct statistics), Sample and Hold
[GM98, EV02, CDK+14] (sum statistics)

No e↵ective solutions for general capping statistics.

Edith Cohen Scalable Weighted Sampling

Sampling framework for unaggregated data [Coh15c]

Unifies classic schemes for distinct or sum statistics, generalizes bottom-k

1. Scores of elements

Scheme is specified by a random mapping ElementScore(h) of elements
h = (x ,w) to a numeric score.

Properties of ElementScore: Distribution depends only on x and w .
Can be dependent for same key, independent for di↵erent keys.

2. Seeds of keys

The seed of a key x is the minimum score of all its elements.

seed(x) = min
h with key x

ElementScore(h)

3. Sample (S , ⌧)

S the k keys with smallest seed(x) (and their seed values)
⌧ the (k + 1)st smallest seed value.

Edith Cohen Scalable Weighted Sampling

Sampling framework for unaggregated data [Coh15c]

Unifies classic schemes for distinct or sum statistics, generalizes bottom-k

1. Scores of elements

Scheme is specified by a random mapping ElementScore(h) of elements
h = (x ,w) to a numeric score.

Properties of ElementScore: Distribution depends only on x and w .
Can be dependent for same key, independent for di↵erent keys.

2. Seeds of keys

The seed of a key x is the minimum score of all its elements.

seed(x) = min
h with key x

ElementScore(h)

3. Sample (S , ⌧)

S the k keys with smallest seed(x) (and their seed values)
⌧ the (k + 1)st smallest seed value.

Edith Cohen Scalable Weighted Sampling

Sampling framework for unaggregated data [Coh15c]

Unifies classic schemes for distinct or sum statistics, generalizes bottom-k

1. Scores of elements

Scheme is specified by a random mapping ElementScore(h) of elements
h = (x ,w) to a numeric score.

Properties of ElementScore: Distribution depends only on x and w .
Can be dependent for same key, independent for di↵erent keys.

2. Seeds of keys

The seed of a key x is the minimum score of all its elements.

seed(x) = min
h with key x

ElementScore(h)

3. Sample (S , ⌧)

S the k keys with smallest seed(x) (and their seed values)
⌧ the (k + 1)st smallest seed value.

Edith Cohen Scalable Weighted Sampling

Sampling framework for unaggregated data [Coh15c]

Unifies classic schemes for distinct or sum statistics, generalizes bottom-k

1. Scores of elements

Scheme is specified by a random mapping ElementScore(h) of elements
h = (x ,w) to a numeric score.

Properties of ElementScore: Distribution depends only on x and w .
Can be dependent for same key, independent for di↵erent keys.

2. Seeds of keys

The seed of a key x is the minimum score of all its elements.

seed(x) = min
h with key x

ElementScore(h)

3. Sample (S , ⌧)

S the k keys with smallest seed(x) (and their seed values)
⌧ the (k + 1)st smallest seed value.

Edith Cohen Scalable Weighted Sampling

Sampling framework for unaggregated data [Coh15c]

Unifies classic schemes for distinct or sum statistics, generalizes bottom-k

1. Scores of elements

Scheme is specified by a random mapping ElementScore(h) of elements
h = (x ,w) to a numeric score.

Properties of ElementScore: Distribution depends only on x and w .
Can be dependent for same key, independent for di↵erent keys.

2. Seeds of keys

The seed of a key x is the minimum score of all its elements.

seed(x) = min
h with key x

ElementScore(h)

3. Sample (S , ⌧)

S the k keys with smallest seed(x) (and their seed values)
⌧ the (k + 1)st smallest seed value.

Edith Cohen Scalable Weighted Sampling

Sampling unaggregated data: Example

Unaggregated data:

(with ElementScore(h))

2

0.06

2

0.31

3

0.78

3

0.12

2 5

0.29

The aggregated view:

with seed(x)

5

0.06

7 3 2

Sample of size k = 2:
5 3

⌧ = 0.29

Edith Cohen Scalable Weighted Sampling

Sampling unaggregated data: Example

Unaggregated data: (with ElementScore(h))

2
0.06

2
0.31

3
0.78

3
0.12

2
0.55

5
0.29

The aggregated view:

with seed(x)

5

0.06

7 3 2

Sample of size k = 2:
5

0.06

3
0.12

⌧ = 0.29

Edith Cohen Scalable Weighted Sampling

Sampling unaggregated data: Example

Unaggregated data: (with ElementScore(h))

2
0.06

2
0.31

3
0.78

3
0.12

2
0.55

5
0.29

The aggregated view:
with seed(x) 5

0.06

7
0.29

3
0.12

2
0.55

Sample of size k = 2:
5

0.06

3
0.12

⌧ = 0.29

Edith Cohen Scalable Weighted Sampling

Sampling unaggregated data: Example

Unaggregated data: (with ElementScore(h))

2
0.06

2
0.31

3
0.78

3
0.12

2
0.55

5
0.29

The aggregated view:
with seed(x) 5

0.06

7
0.29

3
0.12

2
0.55

Sample of size k = 2:
5

0.06

3
0.12

⌧ = 0.29

Edith Cohen Scalable Weighted Sampling

Distinct sampling, casted in our framework

A distinct sample is a uniform sample of k active keys (keys with
wx > 0). Reservoir sampling [Knu68] +Hashing [FM85] [Vit85]

Scoring for distinct sampling

ElementScore(h) = Hash(x), for random hash Hash(x) ⇠ U[0, 1]

Correctness: All elements with same key x have the same score and thus
seed(x) ⌘ Hash(x). The sample is the k active keys with smallest hash.

From the point key x is included inS , we maintain a count cx of the sum
of weights of its elements. Since any key entered the sample on its first
element, we have cx = wx .

Edith Cohen Scalable Weighted Sampling

Distinct sampling, casted in our framework

A distinct sample is a uniform sample of k active keys (keys with
wx > 0). Reservoir sampling [Knu68] +Hashing [FM85] [Vit85]

Scoring for distinct sampling

ElementScore(h) = Hash(x), for random hash Hash(x) ⇠ U[0, 1]

Correctness: All elements with same key x have the same score and thus
seed(x) ⌘ Hash(x). The sample is the k active keys with smallest hash.

From the point key x is included inS , we maintain a count cx of the sum
of weights of its elements. Since any key entered the sample on its first
element, we have cx = wx .

Edith Cohen Scalable Weighted Sampling

Distinct sampling, casted in our framework

A distinct sample is a uniform sample of k active keys (keys with
wx > 0). Reservoir sampling [Knu68] +Hashing [FM85] [Vit85]

Scoring for distinct sampling

ElementScore(h) = Hash(x), for random hash Hash(x) ⇠ U[0, 1]

Correctness: All elements with same key x have the same score and thus
seed(x) ⌘ Hash(x). The sample is the k active keys with smallest hash.

From the point key x is included inS , we maintain a count cx of the sum
of weights of its elements. Since any key entered the sample on its first
element, we have cx = wx .

Edith Cohen Scalable Weighted Sampling

Distinct sampling, casted in our framework

A distinct sample is a uniform sample of k active keys (keys with
wx > 0). Reservoir sampling [Knu68] +Hashing [FM85] [Vit85]

Scoring for distinct sampling

ElementScore(h) = Hash(x), for random hash Hash(x) ⇠ U[0, 1]

Correctness: All elements with same key x have the same score and thus
seed(x) ⌘ Hash(x). The sample is the k active keys with smallest hash.

From the point key x is included inS , we maintain a count cx of the sum
of weights of its elements. Since any key entered the sample on its first
element, we have cx = wx .

Edith Cohen Scalable Weighted Sampling

Estimation from a distinct sample

Each key x with wx > 0 is sampled (conditioned on hashes of other keys)
with probability px|⌧ ⌘ ⌧ .

We have wx for each x 2 S . Therefore, for any Q(f ,H), we can compute
the unbiased inverse probability estimate [HT52]:

Q̂(f ,H) =
X

x2S\H

f (wx)

px|⌧
=

1

⌧

X

x2S\H

f (wx) .

Estimate quality: The sample and estimator are ppswor for distinct
statistics.

=) For a segment H with proportion q, Q̂(distinct,H) has CV ⇡
q

1
qk .

=) For capT statistics, disparity is ⇢(distinct, capT) = T . The bound

on the CV of Q̂(capT ,H) is
q

T
qk . Intuitively, our sample can easily

miss “heavy” keys with high capT (wx) values which contribute more
to the statistics.

Edith Cohen Scalable Weighted Sampling

Estimation from a distinct sample

Each key x with wx > 0 is sampled (conditioned on hashes of other keys)
with probability px|⌧ ⌘ ⌧ .

We have wx for each x 2 S . Therefore, for any Q(f ,H), we can compute
the unbiased inverse probability estimate [HT52]:

Q̂(f ,H) =
X

x2S\H

f (wx)

px|⌧
=

1

⌧

X

x2S\H

f (wx) .

Estimate quality: The sample and estimator are ppswor for distinct
statistics.

=) For a segment H with proportion q, Q̂(distinct,H) has CV ⇡
q

1
qk .

=) For capT statistics, disparity is ⇢(distinct, capT) = T . The bound

on the CV of Q̂(capT ,H) is
q

T
qk . Intuitively, our sample can easily

miss “heavy” keys with high capT (wx) values which contribute more
to the statistics.

Edith Cohen Scalable Weighted Sampling

Estimation from a distinct sample

Each key x with wx > 0 is sampled (conditioned on hashes of other keys)
with probability px|⌧ ⌘ ⌧ .

We have wx for each x 2 S . Therefore, for any Q(f ,H), we can compute
the unbiased inverse probability estimate [HT52]:

Q̂(f ,H) =
X

x2S\H

f (wx)

px|⌧
=

1

⌧

X

x2S\H

f (wx) .

Estimate quality: The sample and estimator are ppswor for distinct
statistics.

=) For a segment H with proportion q, Q̂(distinct,H) has CV ⇡
q

1
qk .

=) For capT statistics, disparity is ⇢(distinct, capT) = T . The bound

on the CV of Q̂(capT ,H) is
q

T
qk . Intuitively, our sample can easily

miss “heavy” keys with high capT (wx) values which contribute more
to the statistics.

Edith Cohen Scalable Weighted Sampling

Estimation from a distinct sample

Each key x with wx > 0 is sampled (conditioned on hashes of other keys)
with probability px|⌧ ⌘ ⌧ .

We have wx for each x 2 S . Therefore, for any Q(f ,H), we can compute
the unbiased inverse probability estimate [HT52]:

Q̂(f ,H) =
X

x2S\H

f (wx)

px|⌧
=

1

⌧

X

x2S\H

f (wx) .

Estimate quality: The sample and estimator are ppswor for distinct
statistics.

=) For a segment H with proportion q, Q̂(distinct,H) has CV ⇡
q

1
qk .

=) For capT statistics, disparity is ⇢(distinct, capT) = T . The bound

on the CV of Q̂(capT ,H) is
q

T
qk . Intuitively, our sample can easily

miss “heavy” keys with high capT (wx) values which contribute more
to the statistics.

Edith Cohen Scalable Weighted Sampling

Sampling for sum statistics

Sample and Hold (counting samples) [GM98, EV02]:

If x 2 S , increment cx . Otherwise, cache if rand() < ⌧ .

Can be used with a fixed-size sample k ; Equivalent to ppswor [CDK+14];
Continuous version (element weights) [CCD11].

Sample and Hold casted in our framework:

Element scoring function

ElementScore(h=(x,w)) ⇠ Exp[w]

The minimum of independent exponential random variables is an
exponential random variable with a parameter that is the sum of their
parameters. We get

seed(x) ⇠ min
elements (x,w)

Exp[w] ⌘ Exp[wx] =) ppswor wrt wx !

Edith Cohen Scalable Weighted Sampling

Sampling for sum statistics

Sample and Hold (counting samples) [GM98, EV02]:

If x 2 S , increment cx . Otherwise, cache if rand() < ⌧ .

Can be used with a fixed-size sample k ; Equivalent to ppswor [CDK+14];
Continuous version (element weights) [CCD11].

Sample and Hold casted in our framework:

Element scoring function

ElementScore(h=(x,w)) ⇠ Exp[w]

The minimum of independent exponential random variables is an
exponential random variable with a parameter that is the sum of their
parameters. We get

seed(x) ⇠ min
elements (x,w)

Exp[w] ⌘ Exp[wx] =) ppswor wrt wx !

Edith Cohen Scalable Weighted Sampling

Sampling for sum statistics

Sample and Hold (counting samples) [GM98, EV02]:

If x 2 S , increment cx . Otherwise, cache if rand() < ⌧ .

Can be used with a fixed-size sample k ; Equivalent to ppswor [CDK+14];
Continuous version (element weights) [CCD11].

Sample and Hold casted in our framework:

Element scoring function

ElementScore(h=(x,w)) ⇠ Exp[w]

The minimum of independent exponential random variables is an
exponential random variable with a parameter that is the sum of their
parameters. We get

seed(x) ⇠ min
elements (x,w)

Exp[w] ⌘ Exp[wx] =) ppswor wrt wx !

Edith Cohen Scalable Weighted Sampling

Unaggregated data: Estimating sum statistics from ppswor

Caveat! We do have a ppswor sample S and the threshold ⌧ , but exact
weights wx for x 2 S are needed for the inverse probability estimator.
When streaming (single pass), we can start “counting” wx only after x
enters the cache, so we may miss some elements and only have cx < wx .

Solutions:

2-passes: Use the first pass to identify the set S of sampled keys.
Use a second pass to exactly count wx for sampled keys. Apply
ppswor inverse probability estimator.

Work with cx : For estimating sum statistics, we can add expected
weight of missed prefix [GM98, EV02, CDK+14] (discrete) [CCD11]

(continuous) to each sampled key in segment to obtain an unbiased
estimate.

Possible to estimate unbiasedly general f [CDK+14] (discrete) [Coh15c]

(continuous)... more later.

Edith Cohen Scalable Weighted Sampling

Unaggregated data: Estimating sum statistics from ppswor

Caveat! We do have a ppswor sample S and the threshold ⌧ , but exact
weights wx for x 2 S are needed for the inverse probability estimator.
When streaming (single pass), we can start “counting” wx only after x
enters the cache, so we may miss some elements and only have cx < wx .

Solutions:

2-passes: Use the first pass to identify the set S of sampled keys.
Use a second pass to exactly count wx for sampled keys. Apply
ppswor inverse probability estimator.

Work with cx : For estimating sum statistics, we can add expected
weight of missed prefix [GM98, EV02, CDK+14] (discrete) [CCD11]

(continuous) to each sampled key in segment to obtain an unbiased
estimate.

Possible to estimate unbiasedly general f [CDK+14] (discrete) [Coh15c]

(continuous)... more later.

Edith Cohen Scalable Weighted Sampling

Unaggregated data: Estimating sum statistics from ppswor

Caveat! We do have a ppswor sample S and the threshold ⌧ , but exact
weights wx for x 2 S are needed for the inverse probability estimator.
When streaming (single pass), we can start “counting” wx only after x
enters the cache, so we may miss some elements and only have cx < wx .

Solutions:

2-passes: Use the first pass to identify the set S of sampled keys.
Use a second pass to exactly count wx for sampled keys. Apply
ppswor inverse probability estimator.

Work with cx : For estimating sum statistics, we can add expected
weight of missed prefix [GM98, EV02, CDK+14] (discrete) [CCD11]

(continuous) to each sampled key in segment to obtain an unbiased
estimate.

Possible to estimate unbiasedly general f [CDK+14] (discrete) [Coh15c]

(continuous)... more later.

Edith Cohen Scalable Weighted Sampling

Unaggregated data: Estimating sum statistics from ppswor

Caveat! We do have a ppswor sample S and the threshold ⌧ , but exact
weights wx for x 2 S are needed for the inverse probability estimator.
When streaming (single pass), we can start “counting” wx only after x
enters the cache, so we may miss some elements and only have cx < wx .

Solutions:

2-passes: Use the first pass to identify the set S of sampled keys.
Use a second pass to exactly count wx for sampled keys. Apply
ppswor inverse probability estimator.

Work with cx : For estimating sum statistics, we can add expected
weight of missed prefix [GM98, EV02, CDK+14] (discrete) [CCD11]

(continuous) to each sampled key in segment to obtain an unbiased
estimate.

Possible to estimate unbiasedly general f [CDK+14] (discrete) [Coh15c]

(continuous)... more later.

Edith Cohen Scalable Weighted Sampling

`-capped sampling [Coh15c]

Hurdle 1

To obtain a sample with gold standard quality for cap`, we need
element scoring that would result in inclusion probability roughly
proportional to cap`(wx)

Hurdle 2

Streaming: Even if we have the “right” sampling probabilities, when
using a single pass we need estimators that work with observed
counts cx instead of with wx

Edith Cohen Scalable Weighted Sampling

`-capped sampling [Coh15c]

Hurdle 1

To obtain a sample with gold standard quality for cap`, we need
element scoring that would result in inclusion probability roughly
proportional to cap`(wx)

Hurdle 2

Streaming: Even if we have the “right” sampling probabilities, when
using a single pass we need estimators that work with observed
counts cx instead of with wx

Edith Cohen Scalable Weighted Sampling

`-capped sampling: Hurdle 1

Obtaining inclusion probabilities roughly proportional to cap`(wx)
Each key has a base hash KeyBase(x) ⇠ U[0, 1/`], obtained using
KeyBase(x) Hash(x)/`. An element h = (x ,w) is assigned a score by
first drawing v ⇠ Exp[w] and then returning v if v > 1/` and
KeyBase(x) otherwise:

element scoring for `-capped samples

ElementScore(h)=(v ⇠ Exp[w])  1/` ? KeyBase(x) : v

The Exp[w] draws are independent for di↵erent elements and
independent of KeyBase(x).

seed(x) distribution

seed(x)⇠(v ⇠ Exp[wx])  1/` ? U[0, 1/`] : v

For keys with wx ⌧ `, this is like ppswor wrt wx

For keys with wx � `, this is like distinct sampling

Edith Cohen Scalable Weighted Sampling

`-capped sampling: Hurdle 1

Obtaining inclusion probabilities roughly proportional to cap`(wx)
Each key has a base hash KeyBase(x) ⇠ U[0, 1/`], obtained using
KeyBase(x) Hash(x)/`. An element h = (x ,w) is assigned a score by
first drawing v ⇠ Exp[w] and then returning v if v > 1/` and
KeyBase(x) otherwise:

element scoring for `-capped samples

ElementScore(h)=(v ⇠ Exp[w])  1/` ? KeyBase(x) : v

The Exp[w] draws are independent for di↵erent elements and
independent of KeyBase(x).

seed(x) distribution

seed(x)⇠(v ⇠ Exp[wx])  1/` ? U[0, 1/`] : v

For keys with wx ⌧ `, this is like ppswor wrt wx

For keys with wx � `, this is like distinct sampling

Edith Cohen Scalable Weighted Sampling

`-capped sampling: Hurdle 1

Obtaining inclusion probabilities roughly proportional to cap`(wx)
Each key has a base hash KeyBase(x) ⇠ U[0, 1/`], obtained using
KeyBase(x) Hash(x)/`. An element h = (x ,w) is assigned a score by
first drawing v ⇠ Exp[w] and then returning v if v > 1/` and
KeyBase(x) otherwise:

element scoring for `-capped samples

ElementScore(h)=(v ⇠ Exp[w])  1/` ? KeyBase(x) : v

The Exp[w] draws are independent for di↵erent elements and
independent of KeyBase(x).

seed(x) distribution

seed(x)⇠(v ⇠ Exp[wx])  1/` ? U[0, 1/`] : v

For keys with wx ⌧ `, this is like ppswor wrt wx

For keys with wx � `, this is like distinct sampling

Edith Cohen Scalable Weighted Sampling

`-capped sampling: Hurdle 1

Obtaining inclusion probabilities roughly proportional to cap`(wx)
Each key has a base hash KeyBase(x) ⇠ U[0, 1/`], obtained using
KeyBase(x) Hash(x)/`. An element h = (x ,w) is assigned a score by
first drawing v ⇠ Exp[w] and then returning v if v > 1/` and
KeyBase(x) otherwise:

element scoring for `-capped samples

ElementScore(h)=(v ⇠ Exp[w])  1/` ? KeyBase(x) : v

The Exp[w] draws are independent for di↵erent elements and
independent of KeyBase(x).

seed(x) distribution

seed(x)⇠(v ⇠ Exp[wx])  1/` ? U[0, 1/`] : v

For keys with wx ⌧ `, this is like ppswor wrt wx

For keys with wx � `, this is like distinct sampling

Edith Cohen Scalable Weighted Sampling

2-pass estimation quality

With 2-passes, we have wx , can compute inclusion probabilities from ⌧
and the distribution, and apply the inverse probability estimator.

Theorem

The CV of estimating Q(capT ,H) from an `-capped sample of size k
with exact weights wx is at most

✓
e

e � 1

max{T/`, `/T}
q(k � 1)

◆0.5

.

⇢ = max{T/`, `/T} is the disparity between cap` and capT .

Overhead factor of (e
e�1)

0.5 ⇡ 1.26 over aggregated “gold standard.”

This is a worst case factor (many items with wx = O(`))

Edith Cohen Scalable Weighted Sampling

2-pass estimation quality

With 2-passes, we have wx , can compute inclusion probabilities from ⌧
and the distribution, and apply the inverse probability estimator.

Theorem

The CV of estimating Q(capT ,H) from an `-capped sample of size k
with exact weights wx is at most

✓
e

e � 1

⇢

q(k � 1)

◆0.5

.

⇢ = max{T/`, `/T} is the disparity between cap` and capT .

Overhead factor of (e
e�1)

0.5 ⇡ 1.26 over aggregated “gold standard.”

This is a worst case factor (many items with wx = O(`))

Edith Cohen Scalable Weighted Sampling

2-pass estimation quality

With 2-passes, we have wx , can compute inclusion probabilities from ⌧
and the distribution, and apply the inverse probability estimator.

Theorem

The CV of estimating Q(capT ,H) from an `-capped sample of size k
with exact weights wx is at most

✓
e

e � 1

⇢

q(k � 1)

◆0.5

.

⇢ = max{T/`, `/T} is the disparity between cap` and capT .

Overhead factor of (e
e�1)

0.5 ⇡ 1.26 over aggregated “gold standard.”

This is a worst case factor (many items with wx = O(`))

Edith Cohen Scalable Weighted Sampling

2-pass estimation quality

With 2-passes, we have wx , can compute inclusion probabilities from ⌧
and the distribution, and apply the inverse probability estimator.

Theorem

The CV of estimating Q(capT ,H) from an `-capped sample of size k
with exact weights wx is at most

✓
e

e � 1

⇢

q(k � 1)

◆0.5

.

⇢ = max{T/`, `/T} is the disparity between cap` and capT .

Overhead factor of (e
e�1)

0.5 ⇡ 1.26 over aggregated “gold standard.”

This is a worst case factor (many items with wx = O(`))

Edith Cohen Scalable Weighted Sampling

Estimation quality: 2-pass vs. gold standard

10-capped sample, pps and ppswor with weights cap10(w).

x axis: the key weight w

y axis: ratio of inclusion probability to max inclusion probability (set
to 0.01).

Ratio gap between
curves is maximizes
at w = 10 and is
(1� 1/e). It is the
loss of 10-capped
versus aggregated
gold standard. 0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

p
/p

m
ax

(p
m
ax

=
0.
01

)

w

(unagg) 10-capped sample SH10

(agg) ppswor for cap10

(agg) pps for cap10

Edith Cohen Scalable Weighted Sampling

Streaming estimators: Hurdle 2

The streaming algorithm maintains an “observed count” cx for x 2 S :

When we process an element h = (x ,w) and x 2 S , we increase
cx cx + w .

When the threshold ⌧ decreases, counts cx are decreased to simulate
the result of sampling with respect to the new threshold.

=) cx is an r.v. with distribution ⇠ D[⌧, `,wx].
Distribution D defines a transform Y [⌧, `] from weights wx to observed
counts cx . Our unbiased estimators are derived by applying f to the
inverted transform Y�1:

Q̂(f ,H) =
X

x2H\S

�(f ,⌧,`)(cx) .

Where
�(f ,⌧,`)(c) ⌘ f (c)/min{1, `⌧}+ f 0(c)/⌧

⇤ Applies when f is continuous and di↵erentiable almost everywhere (this
includes all monotone functions)

Edith Cohen Scalable Weighted Sampling

Streaming estimators: Hurdle 2

The streaming algorithm maintains an “observed count” cx for x 2 S :

When we process an element h = (x ,w) and x 2 S , we increase
cx cx + w .

When the threshold ⌧ decreases, counts cx are decreased to simulate
the result of sampling with respect to the new threshold.

=) cx is an r.v. with distribution ⇠ D[⌧, `,wx].
Distribution D defines a transform Y [⌧, `] from weights wx to observed
counts cx . Our unbiased estimators are derived by applying f to the
inverted transform Y�1:

Q̂(f ,H) =
X

x2H\S

�(f ,⌧,`)(cx) .

Where
�(f ,⌧,`)(c) ⌘ f (c)/min{1, `⌧}+ f 0(c)/⌧

⇤ Applies when f is continuous and di↵erentiable almost everywhere (this
includes all monotone functions)

Edith Cohen Scalable Weighted Sampling

Streaming estimators: Hurdle 2

The streaming algorithm maintains an “observed count” cx for x 2 S :

When we process an element h = (x ,w) and x 2 S , we increase
cx cx + w .

When the threshold ⌧ decreases, counts cx are decreased to simulate
the result of sampling with respect to the new threshold.

=) cx is an r.v. with distribution ⇠ D[⌧, `,wx].
Distribution D defines a transform Y [⌧, `] from weights wx to observed
counts cx . Our unbiased estimators are derived by applying f to the
inverted transform Y�1:

Q̂(f ,H) =
X

x2H\S

�(f ,⌧,`)(cx) .

Where
�(f ,⌧,`)(c) ⌘ f (c)/min{1, `⌧}+ f 0(c)/⌧

⇤ Applies when f is continuous and di↵erentiable almost everywhere (this
includes all monotone functions)

Edith Cohen Scalable Weighted Sampling

Streaming estimators: Hurdle 2

The streaming algorithm maintains an “observed count” cx for x 2 S :

When we process an element h = (x ,w) and x 2 S , we increase
cx cx + w .

When the threshold ⌧ decreases, counts cx are decreased to simulate
the result of sampling with respect to the new threshold.

=) cx is an r.v. with distribution ⇠ D[⌧, `,wx].

Distribution D defines a transform Y [⌧, `] from weights wx to observed
counts cx . Our unbiased estimators are derived by applying f to the
inverted transform Y�1:

Q̂(f ,H) =
X

x2H\S

�(f ,⌧,`)(cx) .

Where
�(f ,⌧,`)(c) ⌘ f (c)/min{1, `⌧}+ f 0(c)/⌧

⇤ Applies when f is continuous and di↵erentiable almost everywhere (this
includes all monotone functions)

Edith Cohen Scalable Weighted Sampling

Streaming estimators: Hurdle 2

The streaming algorithm maintains an “observed count” cx for x 2 S :

When we process an element h = (x ,w) and x 2 S , we increase
cx cx + w .

When the threshold ⌧ decreases, counts cx are decreased to simulate
the result of sampling with respect to the new threshold.

=) cx is an r.v. with distribution ⇠ D[⌧, `,wx].
Distribution D defines a transform Y [⌧, `] from weights wx to observed
counts cx . Our unbiased estimators are derived by applying f to the
inverted transform Y�1:

Q̂(f ,H) =
X

x2H\S

�(f ,⌧,`)(cx) .

Where
�(f ,⌧,`)(c) ⌘ f (c)/min{1, `⌧}+ f 0(c)/⌧

⇤ Applies when f is continuous and di↵erentiable almost everywhere (this
includes all monotone functions)

Edith Cohen Scalable Weighted Sampling

Streaming estimators: Hurdle 2

The streaming algorithm maintains an “observed count” cx for x 2 S :

When we process an element h = (x ,w) and x 2 S , we increase
cx cx + w .

When the threshold ⌧ decreases, counts cx are decreased to simulate
the result of sampling with respect to the new threshold.

=) cx is an r.v. with distribution ⇠ D[⌧, `,wx].
Distribution D defines a transform Y [⌧, `] from weights wx to observed
counts cx . Our unbiased estimators are derived by applying f to the
inverted transform Y�1:

Q̂(f ,H) =
X

x2H\S

�(f ,⌧,`)(cx) .

Where
�(f ,⌧,`)(c) ⌘ f (c)/min{1, `⌧}+ f 0(c)/⌧

⇤ Applies when f is continuous and di↵erentiable almost everywhere (this
includes all monotone functions)

Edith Cohen Scalable Weighted Sampling

Streaming estimators: Hurdle 2

The streaming algorithm maintains an “observed count” cx for x 2 S :

When we process an element h = (x ,w) and x 2 S , we increase
cx cx + w .

When the threshold ⌧ decreases, counts cx are decreased to simulate
the result of sampling with respect to the new threshold.

=) cx is an r.v. with distribution ⇠ D[⌧, `,wx].
Distribution D defines a transform Y [⌧, `] from weights wx to observed
counts cx . Our unbiased estimators are derived by applying f to the
inverted transform Y�1:

Q̂(f ,H) =
X

x2H\S

�(f ,⌧,`)(cx) .

Where
�(f ,⌧,`)(c) ⌘ f (c)/min{1, `⌧}+ f 0(c)/⌧

⇤ Applies when f is continuous and di↵erentiable almost everywhere (this
includes all monotone functions)

Edith Cohen Scalable Weighted Sampling

Streaming estimator quality

Theorem

The CV of the streaming estimator Q̂(capT ,H) applied to an `-capped
sample is upper bounded by

✓ e
e�1 (1 + max{`/T ,T/`})

q(k � 1)

◆0.5

.

Worst-case overhead over aggregated “gold standard.”

Edith Cohen Scalable Weighted Sampling

Streaming estimator quality

Theorem

The CV of the streaming estimator Q̂(capT ,H) applied to an `-capped
sample is upper bounded by

✓ e
e�1 (1+max{`/T ,T/`})

q(k � 1)

◆0.5

.

Worst-case overhead over aggregated “gold standard.”

Edith Cohen Scalable Weighted Sampling

(pseudo) Code: Fixed-k 2-pass distributed `-capped
sampling

// Pass I: Identify k keys in Sample
// Pass I: Thread adds elements to local summary

Sample ; // Initialize max heap/dict of key seed pairs

foreach element h = (x, w) do

if x is in Sample then

Sample[x].seed min{Sample[x].seed, ElementScore(h)}

else

s ElementScore(h)
if s < max{Sample[x].seed} then

Initialize Sample[x]
Sample[x].seed s;
if |Sample| = k + 1 then

y arg max{Sample[x].seed}
delete Sample[y]

// Pass I: Merge two summaries Sample, Sample2
foreach x 2 Sample2 do

if x is in Sample then

Sample[x].seed min{Sample[x].seed, Sample2[x].seed}

else

if Sample2[x].seed < max{Sample[x].seed} then

Initialize Sample[x]
Sample[x].seed Sample2[x].seed;
if |Sample| = k + 1 then

y arg max{Sample[x].seed}
delete Sample[y]

// Pass II: Compute wx for

keys in Sample
// Pass II: Process elements in thread

foreach x 2 Sample do // Initialize thread

Sample[x].w 0

foreach element h = (x, w) do

if x 2 Sample then

Sample[x].w Sample[x] + w

// Pass II: Merge two summaries Sample, Sample2
foreach x 2 Sample do

Sample[x].w Sample[x].w + Sample2[x].w

Edith Cohen Scalable Weighted Sampling

(pseudo) Code: Fixed-k stream `-capped sampling

foreach stream element (x, w) do // Process element

if x is in Counters then

Counters[x] Counters[x] + w ;

else

� � ln(1�rand())

max{`�1,⌧}
// ⇠ Exp[max{`�1, ⌧}]

if � < w and (⌧` > 1 or ⌧`  1 and KeyBase(x) < ⌧) then // insert x
Counters[x] w � �
if |Counters| = k + 1 then // Evict a key

if ⌧` > 1 then

foreach x 2 Counters do

ux rand(); rx rand() ; zx min{⌧ux ,
� ln(1�rx)
Counters[x]

}// x’s evict threshold

if zx  `�1
then

zx KeyBase(x)

y arg maxx2Counters zx ; delete y from Counters // key to evict

⌧⇤ zy // new threshold

foreach x 2 Counters do // Adjust counters according to ⌧⇤

if ux > max{⌧⇤, `�1}/⌧ then

Counters[x]
� � ln(1�rx)

max{`�1,⌧⇤}

⌧ ⌧⇤ ; delete u, r, z, b // deallocate memory

else // ⌧`  1
y arg maxx2Counters KeyBase(x); Delete y from Counters // evict y

⌧ KeyBase(y)// new threshold

return(⌧ ; (x, Counters[x]) for x in Counters)

Edith Cohen Scalable Weighted Sampling

Simulations

CV upper bounds of
q

⇢ e
e�1/(qk) (2-pass) and

q
e

e�1 (1 + ⇢)/(qk)

(1-pass) are worst-case.

What is the behavior on realistic instances ?

Quantify gain from second pass

Understand actual dependence on disparity

How much do we gain from skew (as in aggregated data) ?

Experiments on Zipf distributions:

Zipf parameters ↵ 2 [1, 2]

Segment=full population

Swept query cap T and sampling-scheme cap `.

Edith Cohen Scalable Weighted Sampling

Simulation Results for `-capped samples

Zipf with parameter ↵ = 2, sample size k = 50, m = 105 elements.
NRMSE (500 reps) of estimating Q(capT ,X) from `-capped sample.

1-pass: k = 50, ↵ = 2, m = 100000, rep = 500, NRMSE
`, T 1 5 20 50 100 500 1000 10000
0.1 0.126 0.159 0.216 0.274 0.326 0.502 0.597 1.061
1 0.129 0.141 0.192 0.244 0.293 0.449 0.526 0.908
5 0.193 0.138 0.146 0.173 0.202 0.300 0.353 0.626

20 0.277 0.169 0.124 0.118 0.125 0.183 0.216 0.377
50 0.339 0.206 0.140 0.108 0.094 0.096 0.108 0.182

100 0.390 0.236 0.146 0.107 0.085 0.046 0.034 0.022
500 0.397 0.250 0.162 0.114 0.092 0.047 0.034 0.012

1000 0.396 0.232 0.150 0.108 0.083 0.042 0.031 0.011

10000 0.404 0.244 0.155 0.114 0.085 0.043 0.032 0.012

2-pass: k = 50, ↵ = 2, m = 100000, rep = 500, NRMSE
`, T 1 5 20 50 100 500 1000 10000
0.1 0.125 0.159 0.216 0.274 0.326 0.502 0.597 1.061
1 0.127 0.139 0.190 0.244 0.293 0.449 0.526 0.908
5 0.178 0.137 0.144 0.172 0.202 0.300 0.353 0.626

20 0.235 0.163 0.123 0.116 0.125 0.183 0.216 0.378
50 0.282 0.184 0.133 0.106 0.093 0.094 0.106 0.181

100 0.327 0.204 0.140 0.105 0.083 0.041 0.030 0.020
500 0.321 0.218 0.152 0.114 0.089 0.042 0.030 0.010

1000 0.322 0.208 0.143 0.105 0.080 0.039 0.028 0.009

10000 0.326 0.213 0.147 0.109 0.084 0.040 0.028 0.010

Worst-case: 0.14⇥ 1.26⇥p⇢ ⇡ 0.17
p
⇢ (2-pass) 0.17⇥

p
1 + ⇢ (1-pass)

Edith Cohen Scalable Weighted Sampling

Observations from Simulations

Actual NRMSE is lower than worst-case:
We do not see the

p
e/(e � 1) factor (comes in when many keys

have wx ⇡ `).
Gain from skew: Observed for large T

Note that when T ⌧ `, skew can hurt us on “worst-case” segments
of many light keys

Much better to use ` ⇡ T

2-pass estimation quality is within 10% of 1-pass (=) use 2-pass
to distribute computation but not to improve estimation)

Edith Cohen Scalable Weighted Sampling

Observations from Simulations

Actual NRMSE is lower than worst-case:
We do not see the

p
e/(e � 1) factor (comes in when many keys

have wx ⇡ `).
Gain from skew: Observed for large T

Note that when T ⌧ `, skew can hurt us on “worst-case” segments
of many light keys

Much better to use ` ⇡ T

2-pass estimation quality is within 10% of 1-pass (=) use 2-pass
to distribute computation but not to improve estimation)

Edith Cohen Scalable Weighted Sampling

Observations from Simulations

Actual NRMSE is lower than worst-case:
We do not see the

p
e/(e � 1) factor (comes in when many keys

have wx ⇡ `).
Gain from skew: Observed for large T

Note that when T ⌧ `, skew can hurt us on “worst-case” segments
of many light keys

Much better to use ` ⇡ T

2-pass estimation quality is within 10% of 1-pass (=) use 2-pass
to distribute computation but not to improve estimation)

Edith Cohen Scalable Weighted Sampling

Conclusion

Summary:

Aggregated data: Optimal multi-objective sampling scheme for all
monotone f

Unaggregated data: Sampling framework which unifies and extends
classic solutions for distinct and sum statistics.

Solution for capT statistics, nearly matches aggregated gold
standard.

Natural Questions (with partial answers):

Which other monotone frequency functions can our framework
handle, in near “aggregated gold standard” sense?

Can we do other aggregates of the elements of a given key ?

If we only want Q(capT ,X), can we do better ?
Is there a “Hyperloglog like” [FFGM07] algorithm with sketch size
O(✏�2 + log log n) (instead of O(✏�2 log n)) ?
Can we use HIP estimators? [Coh15a, Tin14]

Edith Cohen Scalable Weighted Sampling

Conclusion

Summary:

Aggregated data: Optimal multi-objective sampling scheme for all
monotone f

Unaggregated data: Sampling framework which unifies and extends
classic solutions for distinct and sum statistics.

Solution for capT statistics, nearly matches aggregated gold
standard.

Natural Questions (with partial answers):

Which other monotone frequency functions can our framework
handle, in near “aggregated gold standard” sense?

Can we do other aggregates of the elements of a given key ?

If we only want Q(capT ,X), can we do better ?
Is there a “Hyperloglog like” [FFGM07] algorithm with sketch size
O(✏�2 + log log n) (instead of O(✏�2 log n)) ?
Can we use HIP estimators? [Coh15a, Tin14]

Edith Cohen Scalable Weighted Sampling

Conclusion

Summary:

Aggregated data: Optimal multi-objective sampling scheme for all
monotone f

Unaggregated data: Sampling framework which unifies and extends
classic solutions for distinct and sum statistics.

Solution for capT statistics, nearly matches aggregated gold
standard.

Natural Questions (with partial answers):

Which other monotone frequency functions can our framework
handle, in near “aggregated gold standard” sense?

Can we do other aggregates of the elements of a given key ?

If we only want Q(capT ,X), can we do better ?
Is there a “Hyperloglog like” [FFGM07] algorithm with sketch size
O(✏�2 + log log n) (instead of O(✏�2 log n)) ?
Can we use HIP estimators? [Coh15a, Tin14]

Edith Cohen Scalable Weighted Sampling

Conclusion

Summary:
Aggregated data: Optimal multi-objective sampling scheme for all
monotone f
Unaggregated data: Sampling framework which unifies and extends
classic solutions for distinct and sum statistics.
Solution for capT statistics, nearly matches aggregated gold
standard.

Natural Questions (with partial answers):
Which other monotone frequency functions can our framework
handle, in near “aggregated gold standard” sense?

Some functions are “hard” for streaming (polynomial lower bounds
on state): E.g., moments with p > 2 [AMS99], threshold

Can handle any f that is a nonnegative combination of capT
functions: All f such that f 0  1 and f 00  0.
Can also obtain a multi-objective sample for these functions
(logarithmic factor on sample size)
Some f with super-linear growth (p 2 (1, 2] moments) is handled by
linear sketches [Ind01, MW10] but not by samples.
Can we support signed updates where f (max{0,w})? Perhaps use
[GLH06, CCD12, Coh15c].

Can we do other aggregates of the elements of a given key ?
If we only want Q(capT ,X), can we do better ?

Is there a “Hyperloglog like” [FFGM07] algorithm with sketch size
O(✏�2 + log log n) (instead of O(✏�2 log n)) ?
Can we use HIP estimators? [Coh15a, Tin14]

Edith Cohen Scalable Weighted Sampling

Conclusion

Summary:
Aggregated data: Optimal multi-objective sampling scheme for all
monotone f
Unaggregated data: Sampling framework which unifies and extends
classic solutions for distinct and sum statistics.
Solution for capT statistics, nearly matches aggregated gold
standard.

Natural Questions (with partial answers):
Which other monotone frequency functions can our framework
handle, in near “aggregated gold standard” sense?

Some functions are “hard” for streaming (polynomial lower bounds
on state): E.g., moments with p > 2 [AMS99], threshold
Can handle any f that is a nonnegative combination of capT
functions: All f such that f 0  1 and f 00  0.

Can also obtain a multi-objective sample for these functions
(logarithmic factor on sample size)
Some f with super-linear growth (p 2 (1, 2] moments) is handled by
linear sketches [Ind01, MW10] but not by samples.
Can we support signed updates where f (max{0,w})? Perhaps use
[GLH06, CCD12, Coh15c].

Can we do other aggregates of the elements of a given key ?
If we only want Q(capT ,X), can we do better ?

Is there a “Hyperloglog like” [FFGM07] algorithm with sketch size
O(✏�2 + log log n) (instead of O(✏�2 log n)) ?
Can we use HIP estimators? [Coh15a, Tin14]

Edith Cohen Scalable Weighted Sampling

Conclusion

Summary:
Aggregated data: Optimal multi-objective sampling scheme for all
monotone f
Unaggregated data: Sampling framework which unifies and extends
classic solutions for distinct and sum statistics.
Solution for capT statistics, nearly matches aggregated gold
standard.

Natural Questions (with partial answers):
Which other monotone frequency functions can our framework
handle, in near “aggregated gold standard” sense?

Some functions are “hard” for streaming (polynomial lower bounds
on state): E.g., moments with p > 2 [AMS99], threshold
Can handle any f that is a nonnegative combination of capT
functions: All f such that f 0  1 and f 00  0.
Can also obtain a multi-objective sample for these functions
(logarithmic factor on sample size)

Some f with super-linear growth (p 2 (1, 2] moments) is handled by
linear sketches [Ind01, MW10] but not by samples.
Can we support signed updates where f (max{0,w})? Perhaps use
[GLH06, CCD12, Coh15c].

Can we do other aggregates of the elements of a given key ?
If we only want Q(capT ,X), can we do better ?

Is there a “Hyperloglog like” [FFGM07] algorithm with sketch size
O(✏�2 + log log n) (instead of O(✏�2 log n)) ?
Can we use HIP estimators? [Coh15a, Tin14]

Edith Cohen Scalable Weighted Sampling

Conclusion

Summary:
Aggregated data: Optimal multi-objective sampling scheme for all
monotone f
Unaggregated data: Sampling framework which unifies and extends
classic solutions for distinct and sum statistics.
Solution for capT statistics, nearly matches aggregated gold
standard.

Natural Questions (with partial answers):
Which other monotone frequency functions can our framework
handle, in near “aggregated gold standard” sense?

Some functions are “hard” for streaming (polynomial lower bounds
on state): E.g., moments with p > 2 [AMS99], threshold
Can handle any f that is a nonnegative combination of capT
functions: All f such that f 0  1 and f 00  0.
Can also obtain a multi-objective sample for these functions
(logarithmic factor on sample size)
Some f with super-linear growth (p 2 (1, 2] moments) is handled by
linear sketches [Ind01, MW10] but not by samples.
Can we support signed updates where f (max{0,w})? Perhaps use
[GLH06, CCD12, Coh15c].

Can we do other aggregates of the elements of a given key ?
If we only want Q(capT ,X), can we do better ?

Is there a “Hyperloglog like” [FFGM07] algorithm with sketch size
O(✏�2 + log log n) (instead of O(✏�2 log n)) ?
Can we use HIP estimators? [Coh15a, Tin14]

Edith Cohen Scalable Weighted Sampling

Conclusion

Summary:

Aggregated data: Optimal multi-objective sampling scheme for all
monotone f

Unaggregated data: Sampling framework which unifies and extends
classic solutions for distinct and sum statistics.

Solution for capT statistics, nearly matches aggregated gold
standard.

Natural Questions (with partial answers):

Which other monotone frequency functions can our framework
handle, in near “aggregated gold standard” sense?

Can we do other aggregates of the elements of a given key ?

If we only want Q(capT ,X), can we do better ?
Is there a “Hyperloglog like” [FFGM07] algorithm with sketch size
O(✏�2 + log log n) (instead of O(✏�2 log n)) ?
Can we use HIP estimators? [Coh15a, Tin14]

Edith Cohen Scalable Weighted Sampling

Conclusion

Summary:
Aggregated data: Optimal multi-objective sampling scheme for all
monotone f
Unaggregated data: Sampling framework which unifies and extends
classic solutions for distinct and sum statistics.
Solution for capT statistics, nearly matches aggregated gold
standard.

Natural Questions (with partial answers):
Which other monotone frequency functions can our framework
handle, in near “aggregated gold standard” sense?
Can we do other aggregates of the elements of a given key ?

(functions of) Sum: here
(functions of) max: small extension to aggregated sampling (through
sample coordination)
what other aggregations are interesting and can be handled ?

If we only want Q(capT ,X), can we do better ?
Is there a “Hyperloglog like” [FFGM07] algorithm with sketch size
O(✏�2 + log log n) (instead of O(✏�2 log n)) ?
Can we use HIP estimators? [Coh15a, Tin14]

Edith Cohen Scalable Weighted Sampling

Conclusion

Summary:

Aggregated data: Optimal multi-objective sampling scheme for all
monotone f

Unaggregated data: Sampling framework which unifies and extends
classic solutions for distinct and sum statistics.

Solution for capT statistics, nearly matches aggregated gold
standard.

Natural Questions (with partial answers):

Which other monotone frequency functions can our framework
handle, in near “aggregated gold standard” sense?

Can we do other aggregates of the elements of a given key ?

If we only want Q(capT ,X), can we do better ?
Is there a “Hyperloglog like” [FFGM07] algorithm with sketch size
O(✏�2 + log log n) (instead of O(✏�2 log n)) ?
Can we use HIP estimators? [Coh15a, Tin14]

Edith Cohen Scalable Weighted Sampling

Thank you!

Edith Cohen Scalable Weighted Sampling

Bibliography I

N. Alon, Y. Matias, and M. Szegedy.
The space complexity of approximating the frequency moments.
J. Comput. System Sci., 58:137–147, 1999.

K. R. W. Brewer, L. J. Early, and S. F. Joyce.
Selecting several samples from a single population.
Australian Journal of Statistics, 14(3):231–239, 1972.

E. Cohen, G. Cormode, and N. Du�eld.
Structure-aware sampling: Flexible and accurate summarization.
Proceedings of the VLDB Endowment, 2011.

E. Cohen, G. Cormode, and N. Du�eld.
Don’t let the negatives bring you down: Sampling from streams of signed updates.
In Proc. ACM SIGMETRICS/Performance, 2012.

S. Chechik, E. Cohen, and H. Kaplan.
Average distance queries through weighted samples in graphs and metric spaces: High
scalability with tight statistical guarantees.
In RANDOM. ACM, 2016.

E. Cohen, N. Du�eld, H. Kaplan, C. Lund, and M. Thorup.
Algorithms and estimators for accurate summarization of unaggregated data streams.
J. Comput. System Sci., 80, 2014.

Edith Cohen Scalable Weighted Sampling

Bibliography II

E. Cohen, N. Du�eld, C. Lund, M. Thorup, and H. Kaplan.
E�cient stream sampling for variance-optimal estimation of subset sums.
SIAM J. Comput., 40(5), 2011.

M. T. Chao.
A general purpose unequal probability sampling plan.
Biometrika, 69(3):653–656, 1982.

E. Cohen and H. Kaplan.
Summarizing data using bottom-k sketches.
In ACM PODC, 2007.

E. Cohen, H. Kaplan, and S. Sen.
Coordinated weighted sampling for estimating aggregates over multiple weight assignments.
VLDB, 2(1–2), 2009.
full: http://arxiv.org/abs/0906.4560.

E. Cohen.
Size-estimation framework with applications to transitive closure and reachability.
J. Comput. System Sci., 55:441–453, 1997.

E. Cohen.
All-distances sketches, revisited: HIP estimators for massive graphs analysis.
TKDE, 2015.

Edith Cohen Scalable Weighted Sampling

Bibliography III

E. Cohen.
Multi-objective weighted sampling.
In HotWeb. IEEE, 2015.
full version: http://arxiv.org/abs/1509.07445.

E. Cohen.
Stream sampling for frequency cap statistics.
In KDD. ACM, 2015.
full version: http://arxiv.org/abs/1502.05955.

N. Du�eld, M. Thorup, and C. Lund.
Priority sampling for estimating arbitrary subset sums.
J. Assoc. Comput. Mach., 54(6), 2007.

C. Estan and G. Varghese.
New directions in tra�c measurement and accounting.
In SIGCOMM. ACM, 2002.

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier.
Hyperloglog: The analysis of a near-optimal cardinality estimation algorithm.
In Analysis of Algorithms (AofA). DMTCS, 2007.

P. Flajolet and G. N. Martin.
Probabilistic counting algorithms for data base applications.
J. Comput. System Sci., 31:182–209, 1985.

Edith Cohen Scalable Weighted Sampling

Bibliography IV

R. Gemulla, W. Lehner, and P. J. Haas.
A dip in the reservoir: Maintaining sample synopses of evolving datasets.
In VLDB, 2006.

P. Gibbons and Y. Matias.
New sampling-based summary statistics for improving approximate query answers.
In SIGMOD. ACM, 1998.

D. G. Horvitz and D. J. Thompson.
A generalization of sampling without replacement from a finite universe.
Journal of the American Statistical Association, 47(260):663–685, 1952.

P. Indyk.
Stable distributions, pseudorandom generators, embeddings and data stream computation.
In Proc. 41st IEEE Annual Symposium on Foundations of Computer Science, pages
189–197. IEEE, 2001.

W. Johnson and J. Lindenstrauss.
Extensions of Lipschitz mappings into a Hilbert space.
Contemporary Math., 26, 1984.

D. E. Knuth.
The Art of Computer Programming, Vol 2, Seminumerical Algorithms.
Addison-Wesley, 1st edition, 1968.

Edith Cohen Scalable Weighted Sampling

Bibliography V

A. Metwally, D. Agrawal, and A. El Abbadi.
E�cient computation of frequent and top-k elements in data streams.
In ICDT, 2005.

J. Misra and D. Gries.
Finding repeated elements.
Technical report, Cornell University, 1982.

M. Monemizadeh and D. P. Woodru↵.
1-pass relative-error lp-sampling with applications.
In Proc. 21st ACM-SIAM Symposium on Discrete Algorithms. ACM-SIAM, 2010.

E. Ohlsson.
Sequential poisson sampling.
J. O�cial Statistics, 14(2):149–162, 1998.

B. Rosén.
Asymptotic theory for successive sampling with varying probabilities without replacement, I.
The Annals of Mathematical Statistics, 43(2):373–397, 1972.

B. Rosén.
Asymptotic theory for order sampling.
J. Statistical Planning and Inference, 62(2):135–158, 1997.

D. Ting.
Streamed approximate counting of distinct elements: Beating optimal batch methods.
In KDD. ACM, 2014.

Edith Cohen Scalable Weighted Sampling

Bibliography VI

J.S. Vitter.
Random sampling with a reservoir.
ACM Trans. Math. Softw., 11(1):37–57, 1985.

Edith Cohen Scalable Weighted Sampling

