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Data Model

Key value pairs (x ,wx) (users/activity, IP flows/sizes)

“Aggregated presentation:” Data elements (x ,wx) have unique keys

5 7 3 2

key

value

“Unaggregated presentation:” (Streamed or distributed) Elements (x ,w)
of key and value w > 0; wx is the sum of values of elements with key x .

2 2 3 3 2 5

Queries are typically specified over the aggregated view
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Summary statistics

Q(f ,H) =
X

x2H

f (wx)

Function f (w) � 0 for w � 0 so that f (0) = 0

Selected segment H ⇢ X (domain, subpopulation) from all keys

Example f ():

• Distinct Count f (w) = 1 (# active keys in segment)

• Sum f (w) = w (sum of weights of keys in segment)

• Moments f (w) = wp (p � 0) (distinct p = 0, sum p = 1)

• Capping f (w) = capT = min{T ,w} (distinct T = 1, sum T = +1)

• Threshold f (w) = threshT = Iw�T (T > 0)

Moments wp with p 2 [0, 1] and cap statistics capT with T 2 (0,+1)
parametrize the range between distinct and sum.
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Example queries Q(f ,H)

135

vv

2

v

9

v

18

vvv

21

vv

4

vv

Segment H: space travelers

Q(count,H) = 4 Q(cap5,H) = 19 Q(thresh10,H) = 2

Segment H: Good guys

Q(count,H) = 4 Q(ln(1 + w),H) ⇡ 12.56

Q: Segment H: Non-human life

Q(count,H) = 3 Q(L22,H) = 769
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Challenges

Multi-objective sample (un)aggregated data: For a set of functions F ,
compute a summary/sample from which we can estimate Q(f ,H) for
various f 2 F , H ✓ X .

Weighted sample unaggregated data: For a given f , compute a
summary/sample from which we can estimate Q(f ,H) for various H

Basic: Estimate Q(f ,H) for a given f , H ✓ X

Goals:

• Optimize tradeo↵s of sample quality (statistical guarantees) and size.

• Scalable computation.
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Scalable Computation

One (or few) passes over the data

Streaming (single sequential pass): Necessary for live dashboards
and when data is discarded. Historically model captured
sequential-access storage devices (tape, disks), Unix pipes.
Streaming model: [Knu68], [MG82], [FM85],. . ., formalized in [AMS99]

Distributed/Parallel aggregation: Process parts of the data
separately and combine small summaries.

Small state

When streaming, the state is what we keep in memory

In distributed aggregation, it is the summary size that is shared

We want state ⌧ number of (distinct) keys

Challenge with unaggregated data: Computing the aggregated view
{(x ,wx)} requires state / number of active keys, which can be very large.
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Talk Overview

Aggregated data sets:

Review the “gold standard” Sample size/ estimation quality
tradeo↵s.
Multi-objective (MO) sampling

• Coordinating samples for di↵erent f 2 F
• MO sampling scheme for all monotone (non-decreasing) f . [Coh15b]

• MO sampling distances from query points. [CCK16]

Unaggregated data sets: How to sample e↵ectively without
aggregation for capping statistics (and more) [Coh15c]
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Aggregated data: Weighted sampling schemes

Data provided as key value pairs (x ,wx).

Compute a sample Sf of size k from which we can estimate Q(f ,H).

To get good size/quality tradeo↵s, need (roughly) Pr[x 2 Sf ] / f (wx):

Poisson Probability Proportional to Size (PPS): Sample keys

independently with px = min{1, kf (wx )P
x f (wx )

}
VarOpt [Cha82, CDL+11]: Dependent PPS for sample size exactly k

Bottom-k/order/weighted reservoir sampling schemes [Ros97, CK07]

foreach key x do // Z [w ]: distribution parameterized by w
seed(x) ⇠ Z [f (wx)]

S  k keys with smallest seed(x); ⌧  (k + 1)th smallest seed(x)

Sequential Poisson (priority) [Ohl98, DTL07]:
seed(x) ⇠ U[0, 1/f (wx)]

PPS without replacement (ppswor) [Ros72]: seed(x) ⇠ Exp[f (wx)]
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Aggregated data: Estimators for weighted samples

Inverse probability estimator of Q(g ,H) from the sample S [HT52]

px = Pr[x 2 S ]: probability that key x is sampled
For each key x , estimate g(wx) by 0 if x 62 S and by g(wx)/px if x 2 S .

Q̂(g ,H) =
X

x2H

ĝ(wx) =
X

x2H\S

g(wx)

px
.

Applies when we can compute px for x 2 S

nonnegative (since g is) unbiased (if g(wx) > 0 =) f (wx) > 0)

Bottom-k samples: px is not available so instead we use

px|⌧ ⌘ Pr[seed(x) < ⌧ ] = Pr[Z [f (wx)] < ⌧ ]

Q̂(g ,H) =
X

x2H\S

ĝ(wx | ⌧) , where ĝ(wx | ⌧) = g(wx)

px|⌧
.

How good is this estimate?
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Aggregated: Estimate quality when g() = f ()

Let q ⌘ q(f ,H) be the fraction of the statistics f due to segment H:

q =
Q(f ,H)

Q(f ,X )
=

P
x2H f (wx)P
x f (wx)

.

bound on the Coe�cient of Variation (CV) (relative standard deviation)
q
var [Q̂(f ,H)]

Q(f ,H)
 1p

q(k � 1)

+concentration: sample size k = c✏�2/q then prob. of rel. error > ✏
decreases exponentially in c .
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Aggregated: Interpreting the CV bound for g() = f ()

CV (relative standard deviation) bound
q
var [Q̂(f ,H)]

Q(f ,H)
 1p

q(k � 1)

=) If we want CV  ✏ on segments H that have q(f ,H) � q fraction
of the total f statistics, we need a sample of size k = ✏�2/q

!! This is the optimal size/quality tradeo↵ for sampling (on average over
segments with proportion q)

1,567,856 22 89 121 2

For CV ✏  10% and q � 0.1% =) Sample size k = 105.

. . . usually k ⌧ total number of active keys.
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Aggregated: Estimate quality when g() 6= f ()

Sample with respect to f , but estimate Q(g ,H)

Disparity between g , f :

⇢(g , f ) = max
w>0

g(w)

f (w)
max
w>0

f (w)

g(w)
.

Disparity is always ⇢(g , f ) � 1.

We have ⇢(g , f ) = 1 () g = cf for some c .

Lemma

CV of Q̂(g ,H) is at most ( ⇢
q(k�1) )

0.5.
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Aggregated: Multi-Objective (MO) Samples

With a weighted sample of size k = ✏�2 with respect to f , we estimate
Q(f ,H) with CV  ✏/

p
q.

But quality guarantee for Q(g ,H) degrades with disparity ⇢(f , g).

What if we want quality guarantee of CV  ✏/
p
q for several f 2 F ?

Naive solution: Use |F | independent samples Sf for f 2 F . Size is |F |✏�2.
Can we do better ?

Multi-objective samples [CKS09]

Approach

Make the dedicated samples for di↵erent f 2 F as similar as possible.
Sample Coordination [BEJ72, Coh97]: Similar samples Sf for similar f .

Work with the union sample, estimate using the inclusion
probabilities in at least one dedicated sample.
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Multi-Objective (MO) Samples

Multi-objective sample SF [CKS09]

SF =
S

f2F Sf is the union of coordinated bottom-k (or pps)
samples for f 2 F
E.g. with priority sampling, draw ux ⇠ U[0, 1] once, and for Sf use
seed(x) = ux/f (wx).

For estimation, use px = Pr[x 2 SF ] (inclusion in at least one
dedicated Sf )

• Estimates have CV  ✏/
p
q for Q(f ,H) for all f 2 F .

• Size typically ⌧ |F |✏�2 (but is as small as possible).
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Multi-objective Priority (sequential Poisson) sampling

x
wx 135 2 9 18 21 4 11 4 2

Count 1 1 1 1 1 1 1 1 1
cap5(wx) 5 2 5 5 5 4 5 4 2
thresh10 1 0 0 1 1 0 1 0 0

ux 0.52 0.24 0.76 0.90 0.14 0.32 0.44 0.07 0.82
ux

thresh10(wx )
0.52 1 1 0.90 0.14 1 0.44 1 1

ux
cap5(wx )

0.104 0.120 0.152 0.18 0.064 0.080 0.088 0.0175 0.41

For k = 3, the MO sample for F = {count, thresh10, cap5} is:
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MO Sample for all monotone functions

What can we say about MO sampling the set M of all monotone
non-decreasing functions of wx ?

M includes all moment, capping, and threshold functions . . .

Theorem [Coh15b]

Size: E[|SM |]  ✏�2ln n, where n number of keys.

Computation: SM and inclusion probabilities used for estimation can
be computed using O(n log ✏�1) operations.

Tight lower bound: When keys have distinct weights, any sample
providing these statistical guarantees has size ⌦(✏�2 ln n). Enough to
look at thresh functions (threshT (x) = 1 if x � T and 0 otherwise)

Sampling scheme builds on a surprising relation to computing
All-Distances sketches [Coh97, Coh15a])
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All-Distances sketches [Coh97, Coh15a])
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MO Sample for single-source distances

Set U of points in a metric space M.
Each point q defines fq(y) ⌘ dqy , for all y 2 M.

q

Q(fq,H) =
P

y2H\U dqy

Theorem

[?] For any M, U ⇢ M:

The MO sample of fq for all q 2 M has size O(✏�2).

The sampling scheme uses O(|U|) pairwise distance computations.
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Talk Overview

Aggregated data sets: Review the “gold standard” Sample size/
estimation quality tradeo↵s.

Multi-objective (MO) sampling
• Coordinating samples for di↵erent f 2 F
• MO sampling scheme for all monotone (non-decreasing) f . [Coh15b]

• MO sampling distances from query points. [CCK16]

Unaggregated data sets: How to sample e↵ectively without
aggregation for capping statistics (and more) [Coh15c]
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Summary: Aggregated data “gold standard” sampling

8f () � 0, with a weighted sample of size k with respect to f (wx):

8 segment H: Q̂(f ,H) has CV 
q

1
q(f ,H)k .

8 g() � 0, H: Q̂(g ,H) has CV 
q

⇢(g ,f )
q(g ,H)k

With a multi-objective sample of size  k ln n:

8 monotone f � 0, segment H: Q̂(f ,H) has CV 
q

1
q(f ,H)k .

Desirables with unaggregated data (and wx ⌘
P

elements (x,w) w):

Computation: One or two passes, state / k (no aggregated view!)

Quality: Sample size/estimate quality tradeo↵ near gold standard.
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Application of capping statistics: Online advertising

The first few impressions of the same ad per user are more e↵ective than
later ones (diminishing return). Advertisers therefore specify

A segment of users (based on geography, demographics, other)

Cap T on the number of impressions per user per time period.

1,567,856 22 89 121 2

Q: targeted segment: galactic-scale travelers cap: 5
Answer (number of qualifying impressions): 15

Q: targeted segment: non-human intelligent life cap: 3
Answer (number of qualifying impressions): 8
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... Frequency Capping in Online advertising

Advertisers specify:

A segment H of users (based on geography, demographics, other)

A cap T on the number of impressions per user per time period.

Campaign planning is interactive. Staging tools use past data to predict
the number Q(capT ,H) of qualifying impressions.

Data is “unaggregated:” Impressions for same user come from
diverse sources (devices, apps, times)

=) Need quick estimates Q̂(capT ,H) from a summary that is
computed e�ciently over the unaggregated data set.
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Toolbox for frequency functions on unaggregated streams

Deterministic algorithms: Misra Gries: [MG82] Space saving [MAEA05]

for heavy hitters

Random linear projections (linear sketches): Project vector of key
values to a vector with logarithmic dimension. JL transform [JL84]

and stable distributions [Ind01] for frequency moments p 2 [0, 2].

Sampling-based : Distinct Reservoir Sampling [Knu68] and MinHash
sketches [FM85, Coh97] (distinct statistics), Sample and Hold
[GM98, EV02, CDK+14] (sum statistics)

No e↵ective solutions for general capping statistics.
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Sampling framework for unaggregated data [Coh15c]

Unifies classic schemes for distinct or sum statistics, generalizes bottom-k

1. Scores of elements

Scheme is specified by a random mapping ElementScore(h) of elements
h = (x ,w) to a numeric score.

Properties of ElementScore: Distribution depends only on x and w .
Can be dependent for same key, independent for di↵erent keys.

2. Seeds of keys

The seed of a key x is the minimum score of all its elements.

seed(x) = min
h with key x

ElementScore(h)

3. Sample (S , ⌧)

S  the k keys with smallest seed(x) (and their seed values)
⌧  the (k + 1)st smallest seed value.
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Sampling unaggregated data: Example

Unaggregated data:

(with ElementScore(h))

2

0.06

2

0.31

3

0.78

3

0.12

2 5

0.29

The aggregated view:

with seed(x)

5

0.06

7 3 2

Sample of size k = 2:
5 3

⌧ = 0.29
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Distinct sampling, casted in our framework

A distinct sample is a uniform sample of k active keys (keys with
wx > 0). Reservoir sampling [Knu68] +Hashing [FM85] [Vit85]

Scoring for distinct sampling

ElementScore(h) = Hash(x), for random hash Hash(x) ⇠ U[0, 1]

Correctness: All elements with same key x have the same score and thus
seed(x) ⌘ Hash(x). The sample is the k active keys with smallest hash.

From the point key x is included inS , we maintain a count cx of the sum
of weights of its elements. Since any key entered the sample on its first
element, we have cx = wx .
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Estimation from a distinct sample

Each key x with wx > 0 is sampled (conditioned on hashes of other keys)
with probability px|⌧ ⌘ ⌧ .

We have wx for each x 2 S . Therefore, for any Q(f ,H), we can compute
the unbiased inverse probability estimate [HT52]:

Q̂(f ,H) =
X

x2S\H

f (wx)

px|⌧
=

1

⌧

X

x2S\H

f (wx) .

Estimate quality: The sample and estimator are ppswor for distinct
statistics.

=) For a segment H with proportion q, Q̂(distinct,H) has CV ⇡
q

1
qk .

=) For capT statistics, disparity is ⇢(distinct, capT ) = T . The bound

on the CV of Q̂(capT ,H) is
q

T
qk . Intuitively, our sample can easily

miss “heavy” keys with high capT (wx) values which contribute more
to the statistics.
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Sampling for sum statistics

Sample and Hold (counting samples) [GM98, EV02]:

If x 2 S , increment cx . Otherwise, cache if rand() < ⌧ .

Can be used with a fixed-size sample k ; Equivalent to ppswor [CDK+14];
Continuous version (element weights) [CCD11].

Sample and Hold casted in our framework:

Element scoring function

ElementScore(h=(x,w)) ⇠ Exp[w ]

The minimum of independent exponential random variables is an
exponential random variable with a parameter that is the sum of their
parameters. We get

seed(x) ⇠ min
elements (x,w)

Exp[w ] ⌘ Exp[wx ] =) ppswor wrt wx !
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Unaggregated data: Estimating sum statistics from ppswor

Caveat! We do have a ppswor sample S and the threshold ⌧ , but exact
weights wx for x 2 S are needed for the inverse probability estimator.
When streaming (single pass), we can start “counting” wx only after x
enters the cache, so we may miss some elements and only have cx < wx .

Solutions:

2-passes: Use the first pass to identify the set S of sampled keys.
Use a second pass to exactly count wx for sampled keys. Apply
ppswor inverse probability estimator.

Work with cx : For estimating sum statistics, we can add expected
weight of missed prefix [GM98, EV02, CDK+14] (discrete) [CCD11]

(continuous) to each sampled key in segment to obtain an unbiased
estimate.

Possible to estimate unbiasedly general f .... [CDK+14] (discrete) [Coh15c]

(continuous)... more later.
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2-passes: Use the first pass to identify the set S of sampled keys.
Use a second pass to exactly count wx for sampled keys. Apply
ppswor inverse probability estimator.

Work with cx : For estimating sum statistics, we can add expected
weight of missed prefix [GM98, EV02, CDK+14] (discrete) [CCD11]

(continuous) to each sampled key in segment to obtain an unbiased
estimate.

Possible to estimate unbiasedly general f .... [CDK+14] (discrete) [Coh15c]

(continuous)... more later.
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`-capped sampling [Coh15c]

Hurdle 1

To obtain a sample with gold standard quality for cap`, we need
element scoring that would result in inclusion probability roughly
proportional to cap`(wx)

Hurdle 2

Streaming: Even if we have the “right” sampling probabilities, when
using a single pass we need estimators that work with observed
counts cx instead of with wx
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`-capped sampling: Hurdle 1

Obtaining inclusion probabilities roughly proportional to cap`(wx)
Each key has a base hash KeyBase(x) ⇠ U[0, 1/`], obtained using
KeyBase(x) Hash(x)/`. An element h = (x ,w) is assigned a score by
first drawing v ⇠ Exp[w ] and then returning v if v > 1/` and
KeyBase(x) otherwise:

element scoring for `-capped samples

ElementScore(h)=(v ⇠ Exp[w ])  1/` ? KeyBase(x) : v

The Exp[w ] draws are independent for di↵erent elements and
independent of KeyBase(x).

seed(x) distribution

seed(x)⇠(v ⇠ Exp[wx ])  1/` ? U[0, 1/`] : v

For keys with wx ⌧ `, this is like ppswor wrt wx

For keys with wx � `, this is like distinct sampling
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2-pass estimation quality

With 2-passes, we have wx , can compute inclusion probabilities from ⌧
and the distribution, and apply the inverse probability estimator.

Theorem

The CV of estimating Q(capT ,H) from an `-capped sample of size k
with exact weights wx is at most

✓
e

e � 1

max{T/`, `/T}
q(k � 1)

◆0.5

.

⇢ = max{T/`, `/T} is the disparity between cap` and capT .

Overhead factor of ( e
e�1 )

0.5 ⇡ 1.26 over aggregated “gold standard.”

This is a worst case factor (many items with wx = O(`))
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Estimation quality: 2-pass vs. gold standard

10-capped sample, pps and ppswor with weights cap10(w).

x axis: the key weight w

y axis: ratio of inclusion probability to max inclusion probability (set
to 0.01).

Ratio gap between
curves is maximizes
at w = 10 and is
(1� 1/e). It is the
loss of 10-capped
versus aggregated
gold standard. 0
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Streaming estimators: Hurdle 2

The streaming algorithm maintains an “observed count” cx for x 2 S :

When we process an element h = (x ,w) and x 2 S , we increase
cx  cx + w .

When the threshold ⌧ decreases, counts cx are decreased to simulate
the result of sampling with respect to the new threshold.

=) cx is an r.v. with distribution ⇠ D[⌧, `,wx ].
Distribution D defines a transform Y [⌧, `] from weights wx to observed
counts cx . Our unbiased estimators are derived by applying f to the
inverted transform Y�1:

Q̂(f ,H) =
X

x2H\S

�(f ,⌧,`)(cx) .

Where
�(f ,⌧,`)(c) ⌘ f (c)/min{1, `⌧}+ f 0(c)/⌧

⇤ Applies when f is continuous and di↵erentiable almost everywhere (this
includes all monotone functions)
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Streaming estimator quality

Theorem

The CV of the streaming estimator Q̂(capT ,H) applied to an `-capped
sample is upper bounded by

✓ e
e�1 (1 + max{`/T ,T/`})

q(k � 1)

◆0.5

.

Worst-case overhead over aggregated “gold standard.”

Edith Cohen Scalable Weighted Sampling



Streaming estimator quality

Theorem

The CV of the streaming estimator Q̂(capT ,H) applied to an `-capped
sample is upper bounded by

✓ e
e�1 (1+max{`/T ,T/`})

q(k � 1)

◆0.5

.

Worst-case overhead over aggregated “gold standard.”

Edith Cohen Scalable Weighted Sampling



(pseudo) Code: Fixed-k 2-pass distributed `-capped
sampling

// Pass I: Identify k keys in Sample
// Pass I: Thread adds elements to local summary

Sample  ; // Initialize max heap/dict of key seed pairs

foreach element h = (x, w) do

if x is in Sample then

Sample[x].seed  min{Sample[x].seed, ElementScore(h)}

else

s  ElementScore(h)
if s < max{Sample[x].seed} then

Initialize Sample[x]
Sample[x].seed  s;
if |Sample| = k + 1 then

y  arg max{Sample[x].seed}
delete Sample[y]

// Pass I: Merge two summaries Sample, Sample2
foreach x 2 Sample2 do

if x is in Sample then

Sample[x].seed  min{Sample[x].seed, Sample2[x].seed}

else

if Sample2[x].seed < max{Sample[x].seed} then

Initialize Sample[x]
Sample[x].seed  Sample2[x].seed;
if |Sample| = k + 1 then

y  arg max{Sample[x].seed}
delete Sample[y]

// Pass II: Compute wx for

keys in Sample
// Pass II: Process elements in thread

foreach x 2 Sample do // Initialize thread

Sample[x].w  0

foreach element h = (x, w) do

if x 2 Sample then

Sample[x].w  Sample[x] + w

// Pass II: Merge two summaries Sample, Sample2
foreach x 2 Sample do

Sample[x].w  Sample[x].w + Sample2[x].w
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(pseudo) Code: Fixed-k stream `-capped sampling

foreach stream element (x, w) do // Process element

if x is in Counters then

Counters[x]  Counters[x] + w ;

else

�  � ln(1�rand())

max{`�1,⌧}
// ⇠ Exp[max{`�1, ⌧}]

if � < w and (⌧` > 1 or ⌧`  1 and KeyBase(x) < ⌧) then // insert x
Counters[x]  w � �
if |Counters| = k + 1 then // Evict a key

if ⌧` > 1 then

foreach x 2 Counters do

ux  rand(); rx  rand() ; zx  min{⌧ux ,
� ln(1�rx )
Counters[x]

}// x’s evict threshold

if zx  `�1
then

zx  KeyBase(x)

y  arg maxx2Counters zx ; delete y from Counters // key to evict

⌧⇤  zy // new threshold

foreach x 2 Counters do // Adjust counters according to ⌧⇤

if ux > max{⌧⇤, `�1}/⌧ then

Counters[x]
� � ln(1�rx )

max{`�1,⌧⇤}

⌧  ⌧⇤ ; delete u, r, z, b // deallocate memory

else // ⌧`  1
y  arg maxx2Counters KeyBase(x); Delete y from Counters // evict y

⌧  KeyBase(y)// new threshold

return(⌧ ; (x, Counters[x]) for x in Counters)
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Simulations

CV upper bounds of
q

⇢ e
e�1/(qk) (2-pass) and

q
e

e�1 (1 + ⇢)/(qk)

(1-pass) are worst-case.

What is the behavior on realistic instances ?

Quantify gain from second pass

Understand actual dependence on disparity

How much do we gain from skew (as in aggregated data) ?

Experiments on Zipf distributions:

Zipf parameters ↵ 2 [1, 2]

Segment=full population

Swept query cap T and sampling-scheme cap `.
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Simulation Results for `-capped samples

Zipf with parameter ↵ = 2, sample size k = 50, m = 105 elements.
NRMSE (500 reps) of estimating Q(capT ,X ) from `-capped sample.

1-pass: k = 50, ↵ = 2, m = 100000, rep = 500, NRMSE
`, T 1 5 20 50 100 500 1000 10000
0.1 0.126 0.159 0.216 0.274 0.326 0.502 0.597 1.061
1 0.129 0.141 0.192 0.244 0.293 0.449 0.526 0.908
5 0.193 0.138 0.146 0.173 0.202 0.300 0.353 0.626

20 0.277 0.169 0.124 0.118 0.125 0.183 0.216 0.377
50 0.339 0.206 0.140 0.108 0.094 0.096 0.108 0.182

100 0.390 0.236 0.146 0.107 0.085 0.046 0.034 0.022
500 0.397 0.250 0.162 0.114 0.092 0.047 0.034 0.012

1000 0.396 0.232 0.150 0.108 0.083 0.042 0.031 0.011

10000 0.404 0.244 0.155 0.114 0.085 0.043 0.032 0.012

2-pass: k = 50, ↵ = 2, m = 100000, rep = 500, NRMSE
`, T 1 5 20 50 100 500 1000 10000
0.1 0.125 0.159 0.216 0.274 0.326 0.502 0.597 1.061
1 0.127 0.139 0.190 0.244 0.293 0.449 0.526 0.908
5 0.178 0.137 0.144 0.172 0.202 0.300 0.353 0.626

20 0.235 0.163 0.123 0.116 0.125 0.183 0.216 0.378
50 0.282 0.184 0.133 0.106 0.093 0.094 0.106 0.181

100 0.327 0.204 0.140 0.105 0.083 0.041 0.030 0.020
500 0.321 0.218 0.152 0.114 0.089 0.042 0.030 0.010

1000 0.322 0.208 0.143 0.105 0.080 0.039 0.028 0.009

10000 0.326 0.213 0.147 0.109 0.084 0.040 0.028 0.010

Worst-case: 0.14⇥ 1.26⇥p⇢ ⇡ 0.17
p
⇢ (2-pass) 0.17⇥

p
1 + ⇢ (1-pass)
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Observations from Simulations

Actual NRMSE is lower than worst-case:
We do not see the

p
e/(e � 1) factor (comes in when many keys

have wx ⇡ `).
Gain from skew: Observed for large T

Note that when T ⌧ `, skew can hurt us on “worst-case” segments
of many light keys

Much better to use ` ⇡ T

2-pass estimation quality is within 10% of 1-pass ( =) use 2-pass
to distribute computation but not to improve estimation)
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Conclusion

Summary:

Aggregated data: Optimal multi-objective sampling scheme for all
monotone f

Unaggregated data: Sampling framework which unifies and extends
classic solutions for distinct and sum statistics.

Solution for capT statistics, nearly matches aggregated gold
standard.

Natural Questions (with partial answers):

Which other monotone frequency functions can our framework
handle, in near “aggregated gold standard” sense?

Can we do other aggregates of the elements of a given key ?

If we only want Q(capT ,X ), can we do better ?
Is there a “Hyperloglog like” [FFGM07] algorithm with sketch size
O(✏�2 + log log n) (instead of O(✏�2 log n)) ?
Can we use HIP estimators? [Coh15a, Tin14]
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Which other monotone frequency functions can our framework
handle, in near “aggregated gold standard” sense?

Some functions are “hard” for streaming (polynomial lower bounds
on state): E.g., moments with p > 2 [AMS99], threshold
Can handle any f that is a nonnegative combination of capT
functions: All f such that f 0  1 and f 00  0.

Can also obtain a multi-objective sample for these functions
(logarithmic factor on sample size)
Some f with super-linear growth (p 2 (1, 2] moments) is handled by
linear sketches [Ind01, MW10] but not by samples.
Can we support signed updates where f (max{0,w})? Perhaps use
[GLH06, CCD12, Coh15c].

Can we do other aggregates of the elements of a given key ?
If we only want Q(capT ,X ), can we do better ?

Is there a “Hyperloglog like” [FFGM07] algorithm with sketch size
O(✏�2 + log log n) (instead of O(✏�2 log n)) ?
Can we use HIP estimators? [Coh15a, Tin14]
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