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The Item-Function Estimation Problem 

Sampling scheme: Applied to data 𝒗 ∈ 𝑽 to obtain a 
sample 𝑆 

  Draw random seed  𝑢 ~ 𝑈[0,1] 
  Include 𝑣𝑖 ∈ 𝑆  ↔ 𝑣𝑖 ≥  𝝉 · 𝑢 

 A Less general formulation is used for this talk: 𝝉 can be different in 
each coordinate  and  we can use a general non-decreasing 𝝉 𝑢  

Goal:  estimate 𝑓(𝒗) from 𝑆 and 𝑢 : specify an estimator 𝑓 (𝑆, 𝑢)   

IFE instance  (𝑽, 𝝉, 𝑓) : 

 Data domain 𝑽 ⊂  𝑅𝑟  

 Scalar  𝝉 

 A function 𝑓: 𝑽 ≥ 0  



Scenario: Social/Communication data 
Activity value 𝑣(𝑏, 𝑐) is associated with each node pair 
(𝑏, 𝑐) (e.g. number of messages, communication)  

Monday  
activity 

(a,b)  40 

(f,g)      5 

(h,c)   20 

(a,z)   10 

…… 

(h,f)    10     

(f,s)     10 

Pairs are PPS sampled (Probability Proportional to Size)   
For some 𝝉 > 0, independent 𝑢(𝑎, 𝑏): 

(𝑎, 𝑏) ∈ 𝑆  ↔ 𝑣 𝑎, 𝑏 ≥  𝝉 ·  𝑢(𝑎, 𝑏) 

Monday 
Sample:   

(a,b) 40 

(a,z)  10 

…….. 

(f,s)    10 



Samples of multiple days 
Coordinated samples: Each pair is sampled with same seed 
𝑢(𝑎, 𝑏)  in different days 

Tuesday  
activity 

(a,b)  3  

(f,g)    5 

(g,c)  10 

(a,z) 50 

…… 

(s,f)   20 

(g,h)  10 

Tuesday 
Sample:   

(g,c) 

(a,z) 50 

…….. 

(g,h) 

Example Queries: 𝐿𝑝 difference (over selected pairs) 

Monday  
activity 

(a,b)  40 

(f,g)      5 

(h,c)   20 

(a,z)   10 

…… 

(h,f)    10     

(f,s)     10 

Monday 
Sample:   

(a,b) 40 

(a,z)  10 

…….. 

(f,s)    10 

Wednesday  

activity 

(a,b)  30  

(g,c)    5 

(h,c)  10 

(a,z) 10 

…… 

(b,f)   20 

(d,h)  10 

Wednesday 

Sample:   

(a,b)  30 

(b,f)   20 

…….. 

(d,h)  10 



Back to the IFE problem 
Many interesting queries:  

   𝐿𝑝 difference, distinct counts, quantile sums,  

can be expressed as sums (or simple functions of such sums)  over 
selected  items ℎ of a function 𝑓 applied to the values tuple of ℎ 

             𝒗(ℎ) = (𝑣 ℎ
1, 𝑣 ℎ

2, 𝑣 ℎ
3, … )       

   

 𝑓(𝒗(ℎ))

ℎ

 

We can apply a linear (sum) estimator 

 𝑓 (𝒗(ℎ))

ℎ

 

For  𝐿𝑝 difference: 𝑓(𝒗) = |𝑣1 − 𝑣2|𝑝 

Each summand is an IFE estimator 



Why Coordinate Samples? 

• Minimize overhead in repeated surveys (also storage) 
Brewer, Early, Joice 1972; Ohlsson ‘98 (Statistics) … 

• Can get better estimators 
Broder ‘97; Byers et al Tran. Networking ‘04; Beyer et al 
SIGMOD ’07; Gibbons VLDB ‘01 ;Gibbons Tirthapurta SPAA 
‘01; Gionis et al VLDB ’99; Hadjieleftheriou et al VLDB 2009; 
Cohen et al ‘93-’13 …. 

• Sometimes cheaper to compute  
Samples of neighborhoods of all nodes in a graph in linear 
time Cohen ’93 … 

 Coordination had been used for 40+ years.  Many applications and 
independent lines of research.  It is time to understand it better.  



Desirable Estimator Properties 

? When can we obtain an estimator 𝑓 (𝑆, 𝑢)that is: 

• Unbiased:  because bias adds up 

• Nonnegative: because 𝑓  is 

• Bounded variance (for all 𝒗) 

• Bounded by a function of 𝑓(𝒗) (implies bounded 
variance) 



Our Results (1) 

Complete characterization in terms of (𝑽, 𝝉, 𝑓) for 
when the IFE instance has  an estimator which is. 

Unbiased and Nonnegative 

Unbiased, Nonnegative, and has bounded variances 

Unbiased, Nonnegative, and bounded 



Variance Competitiveness 
What about getting a "good" estimator  𝑓 𝑆, 𝑢 ? 

• Unbiased, Nonnegative, Bounded variance estimators 
are not unique 

• No UMVUE  (Uniform Minimum Variance Unbiased 
estimator) in general. 

An estimator 𝑓 𝑆, 𝑢  is c-competitive if for any data 𝒗, 
the expectation of the square is within a factor c of the 
minimum possible for 𝒗 (by an unbiased and nonnegative 
estimator). 

For all unbiased nonnegative 𝑔 ,   
    𝐸 [𝑓 2 S, u  | 𝒗]   ≤ 𝑐  𝐸 [𝑔 2 S, u  | 𝒗] 



Our Results (2) 

Thm: For any IFE instance (𝑽, 𝝉, 𝑓) for which an 
unbiased, nonnegative, and bounded-variances 
estimator exists, we can construct an estimator 
that is O(1)-competitive   (84-competitive).  

• In particular, we establish the existence of  
variance competitive estimators 

• The construction is fairly efficient given reasonable 
representation of 𝝉, 𝑓 



What is the minimum variance for data 𝒗 ? 

An important tool we use (to bound competitiveness and 
establish existence of bounded-variance estimator): 

For data 𝒗, we give an explicit construction of a 
“partial” estimator, 𝑓 (𝒗) , defined only on outcomes 
consistent with 𝒗.   

The estimates 𝑓 (𝒗) minimize the variance for 𝒗 
under the constraint that the partial specification 
𝑓 (𝒗) can be completed to an estimator that is 
unbiased and nonnegative everywhere. 

 We give the intuition for this construction. 

 Turns out that 𝑓 (𝒗)  is unique. 



The lower bound function 

For an outcome and seed (S,u)  we can look at the set of 
all consistent data vectors:   𝑉∗ 𝑆, 𝑢   
 
e.g. For 𝑆 = (2,∗,∗) and seed 𝑢, the set of consistent 
vectors includes all vectors where the second and third 
entries are at most 𝑢 𝝉 . 
 
The lower bound 𝑓(S,u)  is the infimum of 𝑓 on 𝑉∗ 𝑆, 𝑢  



Lower bound function for data 𝒗 
Fix the data  𝒗. Consider the lower bound 𝑓(𝑆, 𝑢) as a 

function of the seed 𝑢.  The lower 𝑢 is, the more we know on 
𝒗 and hence on 𝑓(𝒗). Therefore, 𝑓(𝑆, 𝑢) is non-decreasing 

𝑓(𝑆, 𝑢) 

𝑢 1 



Optimal estimates 𝑓 (𝒗) for data 𝒗 

Intuition: The lower bound tell us on outcome S, how “high” we 
can go with the estimate, in order to optimize variance for 𝒗  
while still being nonnegative on all other consistent data vectors. 

𝑓(𝑆, 𝑢) 

𝑢 1 

The optimal estimates 𝑓 (𝒗) are the negated derivative of 
the lower hull of the  Lower bound function.  

Lower Hull 

Lower Bound function for 𝒗  



Follow-up work + Open problems 

 Studied range of Pareto optimal (admissible) estimators:  
Natural estimators:  L* (lower end of range: unique monotone estimator, 
dominates HT) , U* (upper end of range), order optimal estimators  
(optimized for certain data patterns) 

 Obtained tighter competitiveness bounds: L* is 4 competitive, can 
do 3.375 competitive, lower bound is 1.44 competitive.  Close 
this gap! 

 Instance-optimal competitiveness – Give efficient construction 
for any IFE instance (𝑽, 𝝉, 𝑓). 

 Independent Sampling [CK PODS ‘11] – A similar characterization ? 

 Back to practice: Difference norms on sampled data [CK ‘13], 
sketch-based similarity in social networks [CDFGGW COSN ‘13]. 





Estimating L1 difference  
Independent / Coordinated, pps, known seeds 

 destination IP addresses: #IP flows  in two time periods 



Estimating L  2
2 difference  

 Surname occurrences in 2007, 2008 books (Google ngrams) 

Independent / Coordinated, pps, Known seeds 


