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The Item-Function Estimation Problem 

Sampling scheme: Applied to data 𝒗 ∈ 𝑽 to obtain a 
sample 𝑆 

  Draw random seed  𝑢 ~ 𝑈[0,1] 
  Include 𝑣𝑖 ∈ 𝑆  ↔ 𝑣𝑖 ≥  𝝉 · 𝑢 

 A Less general formulation is used for this talk: 𝝉 can be different in 
each coordinate  and  we can use a general non-decreasing 𝝉 𝑢  

Goal:  estimate 𝑓(𝒗) from 𝑆 and 𝑢 : specify an estimator 𝑓 (𝑆, 𝑢)   

IFE instance  (𝑽, 𝝉, 𝑓) : 

 Data domain 𝑽 ⊂  𝑅𝑟  

 Scalar  𝝉 

 A function 𝑓: 𝑽 ≥ 0  



Scenario: Social/Communication data 
Activity value 𝑣(𝑏, 𝑐) is associated with each node pair 
(𝑏, 𝑐) (e.g. number of messages, communication)  

Monday  
activity 

(a,b)  40 

(f,g)      5 

(h,c)   20 

(a,z)   10 

…… 

(h,f)    10     

(f,s)     10 

Pairs are PPS sampled (Probability Proportional to Size)   
For some 𝝉 > 0, independent 𝑢(𝑎, 𝑏): 

(𝑎, 𝑏) ∈ 𝑆  ↔ 𝑣 𝑎, 𝑏 ≥  𝝉 ·  𝑢(𝑎, 𝑏) 

Monday 
Sample:   

(a,b) 40 

(a,z)  10 

…….. 

(f,s)    10 



Samples of multiple days 
Coordinated samples: Each pair is sampled with same seed 
𝑢(𝑎, 𝑏)  in different days 

Tuesday  
activity 

(a,b)  3  

(f,g)    5 

(g,c)  10 

(a,z) 50 

…… 

(s,f)   20 

(g,h)  10 

Tuesday 
Sample:   

(g,c) 

(a,z) 50 

…….. 

(g,h) 

Example Queries: 𝐿𝑝 difference (over selected pairs) 

Monday  
activity 

(a,b)  40 

(f,g)      5 

(h,c)   20 

(a,z)   10 

…… 

(h,f)    10     

(f,s)     10 

Monday 
Sample:   

(a,b) 40 

(a,z)  10 

…….. 

(f,s)    10 

Wednesday  

activity 

(a,b)  30  

(g,c)    5 

(h,c)  10 

(a,z) 10 

…… 

(b,f)   20 

(d,h)  10 

Wednesday 

Sample:   

(a,b)  30 

(b,f)   20 

…….. 

(d,h)  10 



Back to the IFE problem 
Many interesting queries:  

   𝐿𝑝 difference, distinct counts, quantile sums,  

can be expressed as sums (or simple functions of such sums)  over 
selected  items ℎ of a function 𝑓 applied to the values tuple of ℎ 

             𝒗(ℎ) = (𝑣 ℎ
1, 𝑣 ℎ

2, 𝑣 ℎ
3, … )       

   

 𝑓(𝒗(ℎ))

ℎ

 

We can apply a linear (sum) estimator 

 𝑓 (𝒗(ℎ))

ℎ

 

For  𝐿𝑝 difference: 𝑓(𝒗) = |𝑣1 − 𝑣2|𝑝 

Each summand is an IFE estimator 



Why Coordinate Samples? 

• Minimize overhead in repeated surveys (also storage) 
Brewer, Early, Joice 1972; Ohlsson ‘98 (Statistics) … 

• Can get better estimators 
Broder ‘97; Byers et al Tran. Networking ‘04; Beyer et al 
SIGMOD ’07; Gibbons VLDB ‘01 ;Gibbons Tirthapurta SPAA 
‘01; Gionis et al VLDB ’99; Hadjieleftheriou et al VLDB 2009; 
Cohen et al ‘93-’13 …. 

• Sometimes cheaper to compute  
Samples of neighborhoods of all nodes in a graph in linear 
time Cohen ’93 … 

 Coordination had been used for 40+ years.  Many applications and 
independent lines of research.  It is time to understand it better.  



Desirable Estimator Properties 

? When can we obtain an estimator 𝑓 (𝑆, 𝑢)that is: 

• Unbiased:  because bias adds up 

• Nonnegative: because 𝑓  is 

• Bounded variance (for all 𝒗) 

• Bounded by a function of 𝑓(𝒗) (implies bounded 
variance) 



Our Results (1) 

Complete characterization in terms of (𝑽, 𝝉, 𝑓) for 
when the IFE instance has  an estimator which is. 

Unbiased and Nonnegative 

Unbiased, Nonnegative, and has bounded variances 

Unbiased, Nonnegative, and bounded 



Variance Competitiveness 
What about getting a "good" estimator  𝑓 𝑆, 𝑢 ? 

• Unbiased, Nonnegative, Bounded variance estimators 
are not unique 

• No UMVUE  (Uniform Minimum Variance Unbiased 
estimator) in general. 

An estimator 𝑓 𝑆, 𝑢  is c-competitive if for any data 𝒗, 
the expectation of the square is within a factor c of the 
minimum possible for 𝒗 (by an unbiased and nonnegative 
estimator). 

For all unbiased nonnegative 𝑔 ,   
    𝐸 [𝑓 2 S, u  | 𝒗]   ≤ 𝑐  𝐸 [𝑔 2 S, u  | 𝒗] 



Our Results (2) 

Thm: For any IFE instance (𝑽, 𝝉, 𝑓) for which an 
unbiased, nonnegative, and bounded-variances 
estimator exists, we can construct an estimator 
that is O(1)-competitive   (84-competitive).  

• In particular, we establish the existence of  
variance competitive estimators 

• The construction is fairly efficient given reasonable 
representation of 𝝉, 𝑓 



What is the minimum variance for data 𝒗 ? 

An important tool we use (to bound competitiveness and 
establish existence of bounded-variance estimator): 

For data 𝒗, we give an explicit construction of a 
“partial” estimator, 𝑓 (𝒗) , defined only on outcomes 
consistent with 𝒗.   

The estimates 𝑓 (𝒗) minimize the variance for 𝒗 
under the constraint that the partial specification 
𝑓 (𝒗) can be completed to an estimator that is 
unbiased and nonnegative everywhere. 

 We give the intuition for this construction. 

 Turns out that 𝑓 (𝒗)  is unique. 



The lower bound function 

For an outcome and seed (S,u)  we can look at the set of 
all consistent data vectors:   𝑉∗ 𝑆, 𝑢   
 
e.g. For 𝑆 = (2,∗,∗) and seed 𝑢, the set of consistent 
vectors includes all vectors where the second and third 
entries are at most 𝑢 𝝉 . 
 
The lower bound 𝑓(S,u)  is the infimum of 𝑓 on 𝑉∗ 𝑆, 𝑢  



Lower bound function for data 𝒗 
Fix the data  𝒗. Consider the lower bound 𝑓(𝑆, 𝑢) as a 

function of the seed 𝑢.  The lower 𝑢 is, the more we know on 
𝒗 and hence on 𝑓(𝒗). Therefore, 𝑓(𝑆, 𝑢) is non-decreasing 

𝑓(𝑆, 𝑢) 

𝑢 1 



Optimal estimates 𝑓 (𝒗) for data 𝒗 

Intuition: The lower bound tell us on outcome S, how “high” we 
can go with the estimate, in order to optimize variance for 𝒗  
while still being nonnegative on all other consistent data vectors. 

𝑓(𝑆, 𝑢) 

𝑢 1 

The optimal estimates 𝑓 (𝒗) are the negated derivative of 
the lower hull of the  Lower bound function.  

Lower Hull 

Lower Bound function for 𝒗  



Follow-up work + Open problems 

 Studied range of Pareto optimal (admissible) estimators:  
Natural estimators:  L* (lower end of range: unique monotone estimator, 
dominates HT) , U* (upper end of range), order optimal estimators  
(optimized for certain data patterns) 

 Obtained tighter competitiveness bounds: L* is 4 competitive, can 
do 3.375 competitive, lower bound is 1.44 competitive.  Close 
this gap! 

 Instance-optimal competitiveness – Give efficient construction 
for any IFE instance (𝑽, 𝝉, 𝑓). 

 Independent Sampling [CK PODS ‘11] – A similar characterization ? 

 Back to practice: Difference norms on sampled data [CK ‘13], 
sketch-based similarity in social networks [CDFGGW COSN ‘13]. 





Estimating L1 difference  
Independent / Coordinated, pps, known seeds 

 destination IP addresses: #IP flows  in two time periods 



Estimating L  2
2 difference  

 Surname occurrences in 2007, 2008 books (Google ngrams) 

Independent / Coordinated, pps, Known seeds 


