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Very Large Graphs 

 Model many types of relations and interactions 
 Call detail data, email exchanges 

 Web crawls 

 Social Networks: Twitter, Facebook, linkedIn 

 Web searches, Commercial transactions,… 

 Need for scalable analytics: 
 Centralities/Influence  (power/importance/coverage of a 

node or a set of nodes): Viral marketing,… 

 Similarities/Communities (how tightly related are 2 or 
more nodes): Recommendations, Advertising, Marketing 



All-Distances Sketches (ADS) [C ‘94] 

 Summary structures: For each node 𝒊 ∈ 𝑛  :  
𝐀𝐃𝐒(𝒊) “samples” the distance relations of 𝒊 to 
all other nodes. 

Useful for queries involving a single node: 
Neighborhood cardinality and statistics  

Sketches of different nodes are coordinated: 
related in a way that is useful for queries that involve 
multiple nodes (similarities, influence, distance)  

 



All-Distances Sketches (ADS) [C ‘94] 
Basic properties 

  𝒎 edges, 𝒏 nodes, parameter 𝒌 ≥ 1 which 
controls trade-off between sketch size and 
information 

 ADSs work for directed or undirected graphs 

Compact size:   𝐄[ 𝐀𝐃𝐒 𝒊 ] ≤ 𝒌 ln 𝒏  

Scalable Computation: 𝒌𝒎 ln 𝒏 edge traversals 
to compute 𝐀𝐃𝐒 𝒊  for all nodes 𝒊 

Many applications 



All-Distances Sketches: Definition 

𝐀𝐃𝐒(𝒗) is a list of pairs of the form (𝒊, 𝒅𝒗𝒊) 

 Draw a random permutation of the nodes: 
𝒓 ∶ 𝒏  →  [𝒏] 

 𝑖 ∈ 𝐀𝐃𝐒 𝒗 ⟺  𝒓(𝒊) <  kth smallest rank 
amongst nodes that are closer to 𝒗 than 𝒊 

This is a bottom-𝒌 ADS, it is the union of bottom-𝑘 
MinHash sketches (𝑘 smallest rank) of all “neighborhoods.” 

There are other ADS “flavors”,  vary by the rank distribution 
𝒓 (e.g. can use 𝑟(𝑖) ∼ 𝑈[0,1] ) or sketch structure.  



ADS example 

5 

5 

4 

4 
3 
3 

10 
10 10 

10 
10 10 

6 
5 

7 

6 
7 
5 

3 

4 

1 

2 

4 
3 

3 

4 
4 

13 14 15 10 0 6 5 7 15 17 16 17 10 

SP distances: 

0.49 

0.91 

0.56 0.42 

0.07 

0.21 

0.14 

0.28 

0.63 
0.84 

0.70 

0.77 

0.35 

Random permutation of nodes 



ADS example 𝑘 = 1 

All nodes sorted by SP distance from 

0.63 0.42 0.56 0.84 0.07 0.35 0.49 0.91 0.21 0.28 0.14 0.70 0.77 

𝑘 = 1: 
0.63 0.42 0.07 



0.21 

ADS example 𝑘 = 2 

𝑘 = 2: 
0.63 0.42 0.56 0.07 0.35 0.14 

0.63 0.42 0.56 0.84 0.07 0.35 0.49 0.91 0.21 0.28 0.14 0.70 0.77 

Sorted by SP distances from         



“Basic” use of ADSs (90’s– 2013) 

Extract MinHash sketch of the 𝑑 neighborhood of 𝑣,  
𝑁𝑑 𝑣 ,  from ADS(𝑣) :   

     bottom-𝑘{𝑖 ∈ 𝐴𝐷𝑆(𝑣)|𝑑𝑣𝑖 < 𝑑 } 

From MinHash sketches, we can estimate: 

 Cardinality |𝑁𝑑 𝑣 |  

 Estimate has CV   
𝜎

𝜇
≤
1

𝑘−2
  (optimally uses  the 

information in the MinHash sketch) 

 Jaccard similarity of 𝑁𝑑(𝑣)  and 𝑁𝑑(𝑢), 

 Other relations of 𝑁𝑑(𝑣)  and 𝑁𝑑(𝑢), 



 Historic Inverse Probability (HIP) 
inclusion probability & estimator 

 For each node 𝑖, we estimate  the “presence” of 
𝒊 with respect to 𝒗:  𝐼𝑣↝𝑖  (=1 if 𝑣 ↝ 𝑖, 0 otherwise) 

 Estimate is 𝒂𝒗𝒊 = 𝟎 if 𝑖 ∉ ADS(𝑣).  

 If 𝑖 ∈ ADS(𝑣),  we compute the probability 𝑝 that 
it is included, conditioned on fixed rank values of 
all nodes that are closer to 𝑣 than 𝑖. We then use 

the inverse-probability estimate 𝒂𝒗𝒊 =
𝟏

𝒑
. [HT52] 

 This is unbiased (when 𝑝 > 0):  

E 𝑎𝑣𝑖 = 𝑝
1

𝑝
+ 1 − 𝑝 0 = 1 



Bottom-𝑘 HIP  

 

 For bottom-𝑘  and 𝑟 ∼ 𝑈[0,1] 
𝑝 = kth{𝑟(𝑢)|𝑢 ∈ ADS 𝑣 ∧ 𝑑𝑣𝑢 < 𝑑𝑣𝑖} 

HIP can be used with all flavors of MinHash 
sketches.   Over distance (ADS) or time (Streams) 



Example: HIP estimates 

0.21 

Bottom-2 ADS of  

0.63 0.42 0.56 0.07 0.35 0.14 

𝑝: 

𝑝:2nd smallest r value among  closer nodes 

1 1 0.63 0.56 0.35 0.21 0.42 

𝑎 =
1

𝑝
: 1 1 1.59 1.79 2.86 4.76 2.38 



HIP cardinality estimate 
Bottom-2 ADS of  

𝑎: 1 1 1.59 1.79 2.86 4.76 2.38 

distance: 5 0 6 10 15 17 10 

 Query: 𝒏𝟔 𝒗 =  { 𝒊 𝒅𝒗𝒊 ≤ 𝟔 } | =   𝑰𝒅𝒗𝒊≤𝟔  𝒊  

𝒏𝟔(𝒗)  =  𝒂𝒗𝒊
𝒊,𝒅𝒗𝒊 ∈𝑨𝑫𝑺 𝒗  | 𝒅𝒗𝒊≤𝟔 

= 1 + 1 + 1.59 = 3.59 



Quality of HIP cardinality Estimate 

has  CV   
𝜎

𝜇
≤
1

2𝑘−2
   

𝑛𝒅(𝒗)  =  𝒂𝒗𝒊
𝒊,𝒅𝒗𝒊 ∈𝑨𝑫𝑺 𝒗 | 𝒅𝒗𝒊≤𝒅

 

Lemma:  The HIP neighborhood cardinality estimator 

See paper for the proof 

This is 2  improvement over “basic” estimators, 

which have  CV   
𝜎

𝜇
≤
1

𝑘−2
   



HIP versus Basic estimators 

X 2 

HIP 

Basic 



HIP: applications 
Querying ADSs: 

 Cardinality estimation: 2 gain in relative 
error over “basic” (MinHash based) estimates 

 More complex queries: closeness centrality 
with topic awareness (gain can be polynomial) 

 Estimating relations (similarities, coverage) of 
pairs (sets) of nodes . 

Streaming: 

 Approximate distinct counting on streams. 



Topic-aware Distance-decay 
Closeness Centrality 

𝑪𝒗 = 𝜶(𝒅𝒗𝒊)𝜷(𝒊) 
𝒊

 

 𝜶 non increasing; 𝜷 some filter 

Centrality with respect to a filter 𝜷(𝒊):  

 Topic, interests, education level, age, community, 
geography, language, product type 

 Applications for filter: attribute completion, 
targeted advertisements 



….Closeness Centrality 

𝑪𝒗 = 𝜶(𝒅𝒗𝒊)𝜷(𝒊) 
𝒊

 

 𝜶 non increasing; 𝜷 some filter 

 Polynomial (Harmonic)  decay: 𝛼 𝑥 =
1

𝑥
  

 Exponential decay  𝛼 𝑥 = 𝑒−𝑥 

 Threshold ( ∈ 𝑁𝑑 𝑣  ): 𝛼 𝑥 = 1 ⟺ 𝑥 ≤ 𝑑 



HIP estimates of Centrality 

𝑪𝒗 = 𝜶(𝒅𝒗𝒊)𝜷(𝒊) 
𝒊

 

 𝜶 non increasing; 𝜷 some filter 

𝑪𝒗  =  𝒂𝒗𝒊 𝜶(𝒅𝒗𝒊) 𝜷(𝒊) 
𝒊∈𝑨𝑫𝑺(𝒗)

 



HIP estimates: closeness to good/evil 

Bottom-2 ADS of  

Filter:  𝛽 ∈ 0,1    measures “goodness” 

Distance-decay:  𝒆−𝒅𝒗𝒊 

𝑎: 1 1 1.59 1.79 2.86 4.76 2.38 

distance: 5 0 6 10 15 17 10 

𝜷: 𝟏 𝟎 𝟏 𝟎. 𝟐 𝟏 𝟎. 𝟗 𝟎. 𝟏 

𝑪𝒗  =  𝒂𝒗𝒊𝜷(𝒊)𝒆
−𝒅𝒗𝒊

𝒊∈𝑨𝑫𝑺(𝒗)

= 𝒆−𝟓 + 𝒆−𝟔 + 𝟎. 𝟑𝒆−𝟏𝟎 +⋯ 



Counting Distinct Elements on Data Stream 

Elements occur multiple times, we want to count the 
number of distinct elements approximately with 
“small” storage, about O(log log 𝑛) 

 Best practical and theoretical algorithms maintain a 
MinHash sketch. Cardinality is estimated by applying 
an estimator to sketch [Flajolet Martin 85],…  

 Best (in practice) is the HyperLogLog (HLL) algorithm 
and variations.  [Flajolet + FGM 2007],… 

32, 12, 14, 32,  7, 12, 32, 7, 6, 12, 4, 



Counting Distinct Elements with HIP 

 We maintain a MinHash sketch and an approximate 
counter -- variation on [Morris77]. The counter 
explicitly maintains an approximate distinct count.  
 Each time the sketch is updated (E ≤ 𝑘ln 𝑛 times ), 

we increase the counter (add the HIP estimate for 
the inserted new distinct element) 

 The approximate counter can be represented with 
few bits (e.g., can be a relative correction to sketch-
based  estimate or share its “exponent”) 
  This works with any MinHash sketch.  In 

experiments, for comparison,  we use the same 
sketch as HyperLogLog (HLL). 

 



HLL vs. HIP (on HLL sketch) 



Conclusion 

Further ADS+HIP applications:  
 closeness similarity (using ADS+HIP) [CDFGGW COSN 

2013] 
 … Timed-influence oracle 

 ADS: old but a very versatile and powerful tool 
for (scalable approximate) analytics on very 
large graphs: distance/similarity oracles, 
distance distribution, closeness, coverage, 
influence, tightness of communities 

 HIP: simple and practical technique, 
applicable with ADSs and streams  



Thank you!! 
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