
Greedy	Maximization	Framework	for		
Graph-based	Influence	Functions

Edith	Cohen
Google	Research
Tel	Aviv	University

HotWeb '16 1

Large	Graphs				

Model	relations/interactions	(edges)	between	
entities	(nodes)

§ Explicit:	Call	detail,	email	exchanges,		Web	links,	
social	networks	(friend,	follow,	like),	commercial	
transactions,	video	views,	…

§ Implicit:	Images,	search	queries,	(edges	are	shared	
features	or	close	embedding	vectors)

Some	nodes	are	more	central	than	others

Diffusion	in	Networks	

§ Edges	model	direct connections between	entities
§ Diffusion:	Contagion,	information	(news,	opinions),			
…	can	spread	from	seed	nodes	through	edges	to	
nodes	multiple	hops	away

§ Influence: A	measure	of	the	combined	power/	
importance/	coverage	of	a	set	of	seed	nodes.	
(according	to	the	diffusion	process)

Influence	in	Networks	

Computational	Problems:
§ Influence	queries:Given	seed set	S,	compute	

(approximate)		Inf(𝑆)
§ Influence	maximizationarg	 max

*	|	 * ,-
	Inf 𝑆

Find	a	set	of	entities	with	maximum	influence	for	its	size.	
or With	a	“budget”	𝑠,	who	should	we	select	?

Applications	:	 Inf 𝑆 =	 quality	of	a	seed	entities	𝑆 as:		
anchors,	representatives,	cluster	centers,	hubs	in	distribution	
networks,	candidates	for	active	learning	of	labels/properties,	
seeds	for	viral	marketing

Overview	of	contributions

§ A	unified	model	of	graph-based	influence	
functions:	Includes	functions	proposed	in	
previous	work	and	extends	to	allow	general	
submodular	aggregations.

§ A	meta-algorithm	for	influence	maximization:	
Modular	design,	near	linear	computation,	
statistical	worst-case	guarantees	on	
approximation	quality

HotWeb '16 5

Unified	model:	Pairwise	utility	to influence
§ Graph	structure,	diffusion	process		
⟹ pairwise	utility 𝑢56 of	node	𝑖 to	
node	𝑗

§ The	utility of	a	seed	set 𝑆 to	a	node	𝑗:
𝑢*6 = aggregate	u<=

5∈*
e.g.	aggregate	= max

§ The	influenceof	seed	set	𝑆	is	the	
sum	over	𝑗	of	the	utility	of	𝑆 to	𝑗

	Inf 𝑆 = ?𝑢*6 =?aggregate
5∈*66

	u<=

Centrality: Influence	of	a	single	
node	Inf 𝑖 = ∑ 𝑢566

Aggregation	functions
Utility	of	𝑆 to	𝑗

𝑢*6 = aggregate	u<=
5∈*

𝑆 = {					, , }

§ Max:		value	equal	to	that	the	utility	of	
the	most	useful	seed	node	𝑢*6 = 5

§ Sum:	The	more	the	merrier	
𝑢*6 = 5 + 4 + 2

§ Top-2:	sum	of	top	two	seed	utility	
values	𝑢*6 = 5+ 4 (limited	capacity)
+diminishing	return 𝑢*6 = 5 + H

I ⋅ 4
5

4
2

Submodular	top-ℓ :		Up	to	top	ℓ
seeds	contribute,	non-increasing	
marginal	contribution

⟹	Influence	function	is	
submodular	and	monotone		

When	 𝑺 = 𝟏	(centrality):	All	“aggregate”	are	the	same	𝑢*6

Pairwise	utility	from	graph	structure

Ways	to	define	utility	𝒖𝒊𝒋 from	graph	structure:
§ Reachability 𝑢56 = 1 ⟺ 𝑖 ↝ 𝑗 [Kempe	Kleinberg	Tardos 2003]++

§ Distance 𝑢56 = 𝛼(𝑑56)	with	decaying	𝛼 [Bavelas 1948]++	[CK	2004]	
[Bloch	Jackson	2007]++

§ Threshold:		𝑢56 = 1 ⟺ 𝑑56 ≤ 𝑇 [Gomez	Rodriguez	et	al	ICML	11]	
[Du	et	al	NIPS	13]++…

§ …..	Reverse-rank 𝑢56 = 𝛼(𝜋65)	 [KornMuthu	01,	Buchnik C	16]

§ Survival	time	[C	‘16]	(inspired	by	survival	analysis)

+ randomized	models	to	generate	edge	lengths/presence	
[Kempe	Kleinberg	Tardos KDD	2003,	Gomez	Rogriguez et	al	ICML	11,	
Abraho et	al	KDD13’,	Cohen	et	al		COSN	‘13,	Du	et	al	NIPS	’13]

Shorter	paths,	more	paths,	stronger	edges	on	paths	⇒ higher	𝒖𝒊𝒋

Simplest	Model:		Reachability	

𝐼𝑛𝑓 							 = 5

		aggregate=max:			𝑢*6 = max
6∈*

	𝑢56 = 𝐼∃6∈*	-.`.6↝5

= 	 𝑖 ∃𝑗 ∈ 𝑆, 𝑗 ↝ 𝑖 |

HotWeb 2016 9

Utility:	𝑢56 = 𝐼6↝5

Inf 𝑆 = ?𝑢*6
6

=	#nodes	reachable	from	at	least	one	node	in	𝑆.

Simplest	Model:		
Reachability	+	max	aggregation	

Submodular	and	monotone	!

Infabc 														 = 9

HotWeb 2016 10

Reachability	+	top-ℓ submodular	
aggregation

Utility:	𝑢56 = 𝐼6↝5

Inf 𝑆 =?𝑢*6
6

			𝑢*6= 𝑓(#(𝑗 ∈ 𝑆	𝑠. 𝑡. 𝑗 ↝ 𝑖))
𝑓	monotone	concave

I𝑛𝑓 														

HotWeb 2016 11

Randomized	edge	presence
Utility	𝑢56 should	decrease	with	path	length	and	
increase	with	path	multiplicity.
Independent	Cascade	(IC)	model	[KKT	‘03]:
Edge	𝑒 active	with	probability	pi (independent)

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐

=

≪
𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑

Distance-based	Influence

Utility:	u<= = eqrst						𝑢*6 = 𝑒quvw								Inf 𝑆 = ∑ 𝑢*66

𝐼𝑛𝑓 							 =
1 + x

y +
H
yz +

H
y{ +

H
y|

Max	aggregate

Distance-based	Influence

Utility:	u<= = eqrst						𝑢*6 = 𝑒quvw								Inf 𝑆 = ∑ 𝑢*66

2 + }
y +

I
yz +

H
y{ +

H
y|

𝐼𝑛𝑓 														 =

Max	aggregate

Randomized	edge	lengths
Utility	𝑢56 should	decrease	with	path	length	and	
increase	with	path	multiplicity.
Randomized: Edge	lengths	∼ 𝐸𝑥𝑝[𝑤y] drawn	
independently	from	Weibull/	Exponential	distribution

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐

=

≪
𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑

Reverse-rank	Influence

Utility:	u<= = I5,	��(6)				𝑢*6 = I�� = ∈�		Inf 𝑆 = ∑ 𝑢*66

𝐼𝑛𝑓 							 =2

(special	case)	reverse	NN
Max	aggregate

Reverse-rank	Influence

Inf 							 =

𝜋65 :		position	of	𝑖	 in	increasing	distances	from	𝑗

Utility:	u<= = 𝛼(𝜋65)

1

2

3 3

3

58

8

44

4 4

with	u<= =
H
�w�

:

𝜋65 :	rank	of	 by 𝑗

𝟏 +
𝟏
𝟐 + 3 ⋅

𝟏
𝟑+

+4 ⋅ 𝟏𝟒 +
𝟏
𝟓 + 2 ⋅

𝟏
𝟖

Survival	time	Influence

Utility:	u<= = t<=

Inf 							 =

4 ⋅ 𝟓 + 4 ⋅ 𝟏

• Each	edge	has	weight	that	corresponds	to	its	“lifetime”.	
• 𝑡56 maximum	𝑡 such	that	j ↝ 𝑖 when	using	edges	with	
lifetime	≥ 𝑡 (connectivity	survival	time)

1

2

1

2
2

2

55

5
5

5

5

5 5

5

0

00

0

11

1 1

Overview	of	contributions

§ A	unified	model	of	graph-based	influence	
functions:	Includes	functions	proposed	in	
previous	work	and	extends	to	allow	general	
submodular	aggregations.

§ A	meta-algorithm	for	influence	maximization:	
Modular	design,	near	linear	computation,	
statistical	worst-case	guarantees	on	
approximation	quality

HotWeb '16 19

Influence	maximization

§ NP	hard,	even	to	approximate	[Feige ‘98]
§ Influence	function is	submodular	and	monotone	⟹
Greedy	algorithm	is	polynomial	with	approximation	ratio

≥ 1 − 1 − H
-

-
> 1 − H

y
		of	opt	[NWF	‘78]

Given	𝑠,	find	a	set	of	seed	nodes	𝑆 of	size	𝑠 with	
maximum	influence		arg	max

	 * ,-
	Inf 𝑆

Greedy	iteration:		
§ Select	𝑖 ∉ 𝑆 with	maximum		Inf 𝑆 ∪ {𝑖} − Inf 𝑆
§ 𝑆 ← 𝑆 ∪ {𝑖}

§ Greedy	sequence	approximates	the	full	size/quality	tradeoff	
§ But	…Exact	greedy	too	slow	- need	near-linear	algorithms

Meta-SKIM	
Sketch	Based	Influence	Maximization

§ Computes	an	approximate	greedy	sequence.	
Key	property:		Approximate	the	marginal	
influence	of	nodes	to	identify	approximate	
maximizer	at	each	iteration.	

§ Scales	by	maintaining	and	updating	weighted	
samples	(sketches)	of	marginal	influence	sets.	

Meta-SKIM	influence	maximization
SKIM:
§ reachability+max [CDPW	ICDM‘14]
§ General	decay	+	distances +max [CDPW	’15]
§ Threshold-decay+	reverse-rank +	max [BC	Sigmetrics ’16]
𝑆cales	to	networks	with	
10�	edges, actual	approximation	within	few	percent

HotWeb ’2016 22

Meta-SKIM: unifies	and	generalizes	previous	work
§ General	decay	(with	distance,	reverse	rank,	…)
§ Reachability,	distances,	reverse	ranks,	survival	threshold
§ Submodular	top-ℓ aggregations
Inherits	scalability,	statistical	guarantees,	computation	bounds

Meta-SKIM

§ Approximation	ratio	guarantee:

≥ 1 − 1 − H
-

-
− 𝜖 times	Opt

§ Near	linear	worst-case	bound	on	computation	!!

§ Maintain	weighted	samples	of	“marginal	influence	
sets”	of	nodes.		

§ Repeat:
§ Sample	until	estimates	are	accurate	for	“near-maximizers”	
of	marginal	influence.	

§ Add	the	approximate	maximizer	to	seed	set.
§ Update	residual	problem

Meta-SKIM

Modular:	Specified	through	oracle	access	to	utility	matrix
§ Sampling	uses	reverse	sorted	access	oracle:	from	𝑗	returns	

nodes	in	order	of	non-increasing	utility	𝑢56.		Implemented	as	
graph	search

§ Updates	use	forward	search	oracle	from	a	new	seed.	Returns	
all	nodes	with	updated	marginal	utility.	Also	a	graph	search.

§ Maintain	weighted	samples	of	“marginal	influence	
sets”	of	nodes.		

§ Repeat:
§ Sample	until	estimates	are	accurate	for	“near-maximizers”	
of	marginal	influence.	

§ Add	the	approximate	maximizer	to	seed	set.
§ Update	residual	problem

Meta-SKIM

Randomization	handled	using	multiple	MC	
simulations	and	optimizing	for	the	average	over	
simulations

§ Maintain	weighted	samples	of	“marginal	influence	
sets”	of	nodes.		

§ Repeat:
§ Sample	until	estimates	are	accurate	for	“near-maximizers”	
of	marginal	influence.	

§ Add	the	approximate	maximizer	to	seed	set.
§ Update	residual	problem

[CDPW		ICDM	2014]		data	sets	from	SNAP 26

Influence	vs.	#seeds:		full	approx greedy	sequence
IC	Model:	Reach+	max	aggregation	+	randomization

Implementation	by	T.	Pajor (available)

HotWeb ’2016 27

[CDPW		2015]		data	sets	from	SNAP

Influence	vs.	#seeds:		full	approx greedy	sequence
Distance	utility	with	harmonic	or	exponential	decay,	max	

aggregation	+randomization

Implementation	by	T.	Pajor

28

!"

!"#$

!"#%

!"#&

!"#'

!(

!(!(" !("" !(""" !("""" !(""""" !()("!

!"#
$%
&'
()
$'
*+
"+
,

*+,-./!01!2..3!*03.2

45(""
45("""
45(""""

[Buchnik C’	Sigmetrics 2016]		Live	Journal	data	set	from	SNAP

Influence	vs.	#seeds:	full	approx greedy	sequence
Reverse	Rank	Utility,	threshold	decay	(with	different	T)

Implementation	by	E.	Buchnik (available)

Summary	of	contributions
§ Unified	model	of	graph-based	influence	functions

§ Influence	functions	specified	by	
§ pairwise	utility values	(reach/distance/reverse-
rank/survival;	decay	function	;	randomized	
generation)

§ Submodular	aggregation	function	of	seeds	utility
§ Meta-SKIM	Algorithm:	Compute	an	approximate	
greedy	maximizing	sequence	using	near	linear	
computation	for	all	functions

HotWeb 2016 29

Follow	up:		
§ Applications	(seed	selection	for	active	learning,...)
§ modular	implementation

HotWeb ’2016 30

