Greedy Maximization Framework for Graph-based Influence Functions

Edith Cohen Google Research S Tel Aviv University

Large Graphs

Model relations/interactions (edges) between entities (nodes)

- Explicit: Call detail, email exchanges, Web links, social networks (friend, follow, like), commercial transactions, video views, ...
- Implicit: Images, search queries, (edges are shared features or close embedding vectors)

Some nodes are more central than others

Diffusion in Networks

- Edges model *direct* connections between entities
- Diffusion: Contagion, information (news, opinions),
 ... can spread from seed nodes through edges to
 nodes multiple hops away

 Influence: A measure of the combined power/ importance/ coverage of a set of *seed nodes*. (according to the diffusion process)

Influence in Networks

<u>Applications</u>: Inf(S) = quality of a seed entities S as:

anchors, representatives, cluster centers, hubs in distribution networks, candidates for active learning of labels/properties, seeds for viral marketing

Computational Problems:

ketches

- Influence queries: Given seed set S, compute
 (approximate) Inf(S)
- **Influence maximization** arg max S | |S| = S Inf(S)

Find a set of entities with maximum influence for its size. or With a "budget" s, who should we select ?

Overview of contributions

- A unified model of graph-based influence functions: Includes functions proposed in previous work and extends to allow general submodular aggregations.
- A meta-algorithm for influence maximization: Modular design, near linear computation, statistical worst-case guarantees on approximation quality

Unified model: Pairwise utility to influence

- Graph structure, diffusion process \Rightarrow pairwise <u>utility</u> u_{ij} of node *i* to node *j*
- The utility of a seed set S to a node j:

 $u_{sj} = aggregateu_{ij}$ $i \in S$

e.g. aggregate = max

The <u>influence</u> of seed set S is the sum over j of the utility of S to j

$$Inf(S) = \sum_{j} u_{Sj} = \sum_{j} aggregate \ u_{ij}$$

Centrality: Influence of a single
node Inf(i) = $\sum_{j} u_{ij}$

Aggregation functions

Jtility of *S* to *j*
$$u_{Sj} = aggregate u_{ij}$$

 $i \in S$

- Max: value equal to that the utility of the most useful seed node u_{S j} = 5
- Sum: The more the merrier $u_{Si} = 5 + 4 + 2$
- Top-2: sum of top two seed utility values $u_{Sj} = 5 + 4$ (limited capacity) +diminishing return $u_{Sj} = 5 + \frac{1}{2} \cdot 4$

Submodular top-ℓ : Up to top ℓ seeds contribute, non-increasing marginal contribution

⇒ Influence function is submodular and monotone

When |S| = 1 (centrality): All "aggregate" are the same u_{Sj}

Pairwise utility from graph structure

Shorter paths, more paths, stronger edges on paths \Rightarrow higher u_{ij}

Ways to define utility u_{ij} from graph structure:

- Reachability $u_{ij} = 1 \iff i \rightsquigarrow j$ [Kempe Kleinberg Tardos 2003]++
- Distance $u_{ij} = \alpha(d_{ij})$ with decaying α [Bavelas 1948]++ [CK 2004] [Bloch Jackson 2007]++
 - Threshold: $u_{ij} = 1 \Leftrightarrow d_{ij} \leq T$ [Gomez Rodriguez et al ICML 11] [Du et al NIPS 13]++...
- Reverse-rank $u_{ij} = \alpha(\pi_{ji})$ [Korn Muthu 01, Buchnik C 16]
- Survival time [C '16] (inspired by survival analysis)

+ randomized models to generate edge lengths/presence [Kempe Kleinberg Tardos KDD 2003, Gomez Rogriguez et al ICML 11, Abraho et al KDD13', Cohen et al COSN '13, Du et al NIPS '13]

Simplest Model: Reachability

Utility: $u_{ij} = I_{j \sim i}$ aggregate=max: $u_{Sj} = \max_{j \in S} u_{ij} = I_{\exists j \in S \ s.t.j \sim i}$ $Inf(S) = \sum_{i} u_{Sj} = |\{i | \exists j \in S, j \sim i\}|$

= #nodes reachable from at least one node in S.

Inf (

) = 5

Simplest Model: Reachability + max aggregation

Submodular and monotone !

Reachability + top- ℓ submodular aggregation Utility: $u_{ij} = I_{j \sim i}$ $u_{Sj} = f(\#(j \in S \ s. t. j \sim i))$ $\mathrm{Inf}(S) = \sum_{i} u_{Sj}$

f monotone concave

Randomized edge presence

Utility u_{ij} should decrease with path length and increase with path multiplicity.

Independent Cascade (IC) model [KKT '03]:

Edge *e* active with probability p_e (independent)

deterministic

randomized

//

Distance-based Influence

 $\begin{array}{ll} \text{Max aggregate} \\ \text{Utility: } u_{ij} = e^{-d_{ij}} & u_{Sj} = e^{-d_{Sj}} & \text{Inf}(S) = \sum_{j} u_{Sj} \end{array}$

Distance-based Influence

 $\begin{array}{ll} \text{Max aggregate} \\ \text{Utility: } u_{ij} = e^{-d_{ij}} & u_{Sj} = e^{-d_{Sj}} & \text{Inf}(S) = \sum_j u_{Sj} \end{array}$

Randomized edge lengths

Utility u_{ij} should decrease with path length and increase with path multiplicity.

Randomized: Edge lengths $\sim Exp[w_e]$ drawn independently from Weibull/ Exponential distribution

randomized

<

Reverse-rank Influence

(special case) reverse NN

Max aggregate

Utility: $u_{ij} = I_{i=NN(j)}$ $u_{Sj} = I_{NN(j)\in S}$ $Inf(S) = \sum_{j} u_{Sj}$

Survival time Influence

- Each edge has weight that corresponds to its "*lifetime*".
- *t_{ij}* maximum *t* such that j *¬ i* when using edges with lifetime ≥ *t* (connectivity survival time)

Overview of contributions

- A unified model of graph-based influence functions: Includes functions proposed in previous work and extends to allow general submodular aggregations.
- A meta-algorithm for influence maximization: Modular design, near linear computation, statistical worst-case guarantees on approximation quality

Influence maximization

Given *s*, find a set of seed nodes *S* of size *s* with maximum influence $\arg \max_{|S|=s} Inf(S)$

- NP hard, even to approximate [Feige '98]
- Influence function is submodular and monotone ⇒
 Greedy algorithm is polynomial with approximation ratio

$$\geq 1 - \left(1 - \frac{1}{s}\right)^s > 1 - \frac{1}{e}$$
 of opt [NWF '78]

Greedy iteration:

- Select *i* ∉ *S* with maximum Inf(*S* ∪ {*i*}) − Inf(*S*) *S* ← *S* ∪ {*i*}
- Greedy sequence approximates the full size/quality tradeoff
- But ... Exact greedy too slow need near-linear algorithms

Sketch Based Influence Maximization

- Computes an *approximate greedy sequence*.
 Key property: Approximate the *marginal influence* of nodes to identify approximate maximizer *at each iteration*.
- Scales by maintaining and updating weighted samples (sketches) of marginal influence sets.

Meta-SKIM influence maximization

SKIM:

- reachability+max [CDPW ICDM'14]
- General decay + distances +max [CDPW '15]
- Threshold-decay+ reverse-rank + max [BC Sigmetrics '16]
 Scales to networks with
- 10⁸ edges, actual approximation within few percent
 - Meta-SKIM: unifies and generalizes previous work
 - General decay (with distance, reverse rank, ...)
 - Reachability, distances, reverse ranks, survival threshold
 - Submodular top-*l* aggregations

Inherits scalability, statistical guarantees, computation bounds

- Maintain weighted samples of "marginal influence sets" of nodes.
- Repeat:
 - Sample until estimates are accurate for "near-maximizers" of marginal influence.
 - Add the approximate maximizer to seed set.
 - Update residual problem
 - Approximation ratio guarantee:

$$\geq 1 - \left(1 - \frac{1}{s}\right)^s - \epsilon$$
 times Opt

Near linear worst-case bound on computation !!

- Maintain weighted samples of "marginal influence sets" of nodes.
- Repeat:
 - Sample until estimates are accurate for "near-maximizers" of marginal influence.
 - Add the approximate maximizer to seed set.
 - Update residual problem

Modular: Specified through oracle access to utility matrix

- Sampling uses reverse sorted access oracle: from *j* returns nodes in order of non-increasing utility *u_{ij}*. Implemented as graph search
- Updates use forward search oracle from a new seed. Returns all nodes with updated marginal utility. Also a graph search.

- Maintain weighted samples of "marginal influence sets" of nodes.
- Repeat:
 - Sample until estimates are accurate for "near-maximizers" of marginal influence.
 - Add the approximate maximizer to seed set.
 - Update residual problem

Randomization handled using multiple MC simulations and optimizing for the average over simulations

Influence vs. #seeds: full approx greedy sequence IC Model: Reach+ max aggregation + randomization

Influence vs. #seeds: full approx greedy sequence Distance utility with harmonic or exponential decay, max aggregation +randomization

[CDPW 2015] data sets from SNAP

Implementation by T. Pajor

Influence vs. #seeds: full approx greedy sequence Reverse Rank Utility, threshold decay (with different T)

[Buchnik C' Sigmetrics 2016] Live Journal data set from SNAP Implementation by E. Buchnik (available)

Summary of contributions

- Unified model of graph-based influence functions
 - Influence functions specified by
 - pairwise *utility* values (reach/distance/reverserank/survival; decay function ; randomized generation)
 - Submodular aggregation function of seeds utility
- Meta-SKIM Algorithm: Compute an approximate greedy maximizing sequence using near linear computation for all functions

Follow up:

- Applications (seed selection for active learning,...)
- modular implementation

Thank you !!