
1

Sketch-based Influence Maximization and
Computation: Scaling up with Guarantees

Edith Cohen Daniel Delling Thomas Pajor Renato Werneck

Microsoft Research

4 November 2014

2

Influence

Influence
• spread of contagion, information diffusion, spread of infection, …
• Studied in social, biological or physical networks, …

Applications:
• Viral marketing, product placement [GLM01, RD02],
• sensor placement in water distribution networks for contamination
detection [LKG+07],

• …

Various infection models exist.

2

Influence

Influence
• spread of contagion, information diffusion, spread of infection, …
• Studied in social, biological or physical networks, …

Applications:
• Viral marketing, product placement [GLM01, RD02],
• sensor placement in water distribution networks for contamination
detection [LKG+07],

• …

Various infection models exist.

3

Binary Independent Cascade Model [GLM01, KKT03]

Input:
• Directed graph G = (V, E) with
• infection probabilities p(u, v)
for every edge (u, v) ∈ E.

Interpretation:
• Edge (u, v) is live with probability p(u, v).
• In live case: u is infected⇒ v is infected.
• Set of live edges forms a propagation instance.

Definition of Influence
• Given a set S of seed nodes:
• Expected (over prop. instances) number of reachable nodes from S.

0.2

0.3
0.2

0.20.5

0.1

0.1
0.3 0.1

0.1

3

Binary Independent Cascade Model [GLM01, KKT03]

Input:
• Directed graph G = (V, E) with
• infection probabilities p(u, v)
for every edge (u, v) ∈ E.

Interpretation:
• Edge (u, v) is live with probability p(u, v).
• In live case: u is infected⇒ v is infected.
• Set of live edges forms a propagation instance.

Definition of Influence
• Given a set S of seed nodes:
• Expected (over prop. instances) number of reachable nodes from S.

0.2

0.3
0.2

0.20.5

0.1

0.1
0.3 0.1

0.1

3

Binary Independent Cascade Model [GLM01, KKT03]

Input:
• Directed graph G = (V, E) with
• infection probabilities p(u, v)
for every edge (u, v) ∈ E.

Interpretation:
• Edge (u, v) is live with probability p(u, v).
• In live case: u is infected⇒ v is infected.
• Set of live edges forms a propagation instance.

Definition of Influence
• Given a set S of seed nodes:
• Expected (over prop. instances) number of reachable nodes from S.

3

Binary Independent Cascade Model [GLM01, KKT03]

Input:
• Directed graph G = (V, E) with
• infection probabilities p(u, v)
for every edge (u, v) ∈ E.

Interpretation:
• Edge (u, v) is live with probability p(u, v).
• In live case: u is infected⇒ v is infected.
• Set of live edges forms a propagation instance.

Definition of Influence
• Given a set S of seed nodes:
• Expected (over prop. instances) number of reachable nodes from S.

4

Considered Problems

1. Influence Computation
• Given a seed node set S:
• What is the influence of S in G?

2. Influence Maximization
• Given a number N:
• Compute sequence S of seed nodes
of length N such that

• influence for every prefix of S
close to maximum for its size.

4

Considered Problems

1. Influence Computation
• Given a seed node set S:
• What is the influence of S in G?

S

2. Influence Maximization
• Given a number N:
• Compute sequence S of seed nodes
of length N such that

• influence for every prefix of S
close to maximum for its size.

4

Considered Problems

1. Influence Computation
• Given a seed node set S:
• What is the influence of S in G?

S

2. Influence Maximization
• Given a number N:
• Compute sequence S of seed nodes
of length N such that

• influence for every prefix of S
close to maximum for its size.

4

Considered Problems

1. Influence Computation
• Given a seed node set S:
• What is the influence of S in G?

S

2. Influence Maximization
• Given a number N:
• Compute sequence S of seed nodes
of length N such that

• influence for every prefix of S
close to maximum for its size.

4

Considered Problems

1. Influence Computation
• Given a seed node set S:
• What is the influence of S in G?

S

2. Influence Maximization
• Given a number N:
• Compute sequence S of seed nodes
of length N such that

• influence for every prefix of S
close to maximum for its size.

5

Simulation-Based Approach

Problem: Working directly with the probabilistic model is challenging.

Simulation-Based Approach [KKT03]
• Independently draw ℓ propagation instances G(i)

using the given edge probabilities.
• Influence in instance i: # nodes reachable in G(i).
Can be computed with BFS from S.

• Total Influence: Average (over instances) size of reachable sets.

Properties
• Average influence is unbiased estimate and
• converges to the actual influence.
• Approach also handles arbitrary propagation instances;
e.g., for capturing traces from more complex influence models.

5

Simulation-Based Approach

Problem: Working directly with the probabilistic model is challenging.

Simulation-Based Approach [KKT03]
• Independently draw ℓ propagation instances G(i)

using the given edge probabilities.
• Influence in instance i: # nodes reachable in G(i).
Can be computed with BFS from S.

• Total Influence: Average (over instances) size of reachable sets.

Properties
• Average influence is unbiased estimate and
• converges to the actual influence.
• Approach also handles arbitrary propagation instances;
e.g., for capturing traces from more complex influence models.

5

Simulation-Based Approach

Problem: Working directly with the probabilistic model is challenging.

Simulation-Based Approach [KKT03]
• Independently draw ℓ propagation instances G(i)

using the given edge probabilities.
• Influence in instance i: # nodes reachable in G(i).
Can be computed with BFS from S.

• Total Influence: Average (over instances) size of reachable sets.

Properties
• Average influence is unbiased estimate and
• converges to the actual influence.
• Approach also handles arbitrary propagation instances;
e.g., for capturing traces from more complex influence models.

6

Related Work

Greedy Algorithm [KKT03]
• Uses simulation-based approach.
• In each iteration: Add to S node with maximal marginal influence
taking into account the current seed nodes.

• Evaluating influence requires graph searches on all instances.
Optimizations, such as using lazy evaluation, exist [LKG+07].

⇒ Scales very poorly, even for medium-sized graphs [CWW10].

Other Algorithms – usually approximate Greedy, but…
• either have no quality guarantees [CWY09, CWW10, JHC12],
• are not practical [BBCL14],
• or do not compute full sequence of max. influence nodes [TXS14].

Existing approaches either slow or without guarantees on quality.

6

Related Work

Greedy Algorithm [KKT03]
• Uses simulation-based approach.
• In each iteration: Add to S node with maximal marginal influence
taking into account the current seed nodes.

• Evaluating influence requires graph searches on all instances.
Optimizations, such as using lazy evaluation, exist [LKG+07].

⇒ Scales very poorly, even for medium-sized graphs [CWW10].

Other Algorithms – usually approximate Greedy, but…
• either have no quality guarantees [CWY09, CWW10, JHC12],
• are not practical [BBCL14],
• or do not compute full sequence of max. influence nodes [TXS14].

Existing approaches either slow or without guarantees on quality.

6

Related Work

Greedy Algorithm [KKT03]
• Uses simulation-based approach.
• In each iteration: Add to S node with maximal marginal influence
taking into account the current seed nodes.

• Evaluating influence requires graph searches on all instances.
Optimizations, such as using lazy evaluation, exist [LKG+07].

⇒ Scales very poorly, even for medium-sized graphs [CWW10].

Other Algorithms – usually approximate Greedy, but…
• either have no quality guarantees [CWY09, CWW10, JHC12],
• are not practical [BBCL14],
• or do not compute full sequence of max. influence nodes [TXS14].

Existing approaches either slow or without guarantees on quality.

7

Our Goals

For influence maximization we want an algorithm that…
• computes a full influence permutation,
• works with arbitrary propagation instances,
• scales well to graphs with billions of edges,
• has guarantees on the quality.

We want an influence oracle that…
• uses near linear time preprocessing
and near linear storage

• quickly estimates for any seed set S its influence
• with provably small relative error.

8

Reachability Sketches [Coh97]

Idea:
Compute small structure per node from which to estimate its influence.

Reachability Sketches:
1. For every node u:
Assign indep. rank r(u) ∼ U[0, 1].

2. Sketch X(u):
k smallest ranks reachable from u.

3. Cardinality est. of u’s reachable set
given by (k− 1)/max{X(u)}.

Properties
• Gives unbiased estimate
• with CV of 1/

√
k− 2,

• which is well concentrated.

8

Reachability Sketches [Coh97]

Idea:
Compute small structure per node from which to estimate its influence.

Reachability Sketches:
1. For every node u:
Assign indep. rank r(u) ∼ U[0, 1].

2. Sketch X(u):
k smallest ranks reachable from u.

3. Cardinality est. of u’s reachable set
given by (k− 1)/max{X(u)}.

0

1

2

3

4

56

7

8

9

Properties
• Gives unbiased estimate
• with CV of 1/

√
k− 2,

• which is well concentrated.

8

Reachability Sketches [Coh97]

Idea:
Compute small structure per node from which to estimate its influence.

Reachability Sketches:
1. For every node u:
Assign indep. rank r(u) ∼ U[0, 1].

2. Sketch X(u):
k smallest ranks reachable from u.

3. Cardinality est. of u’s reachable set
given by (k− 1)/max{X(u)}.

0
0.52

1
0.76

2
0.92

3
0.53

4
0.97

5
0.71

6
0.85

7
0.06

8
0.32

9
0.38

Properties
• Gives unbiased estimate
• with CV of 1/

√
k− 2,

• which is well concentrated.

8

Reachability Sketches [Coh97]

Idea:
Compute small structure per node from which to estimate its influence.

Reachability Sketches:
1. For every node u:
Assign indep. rank r(u) ∼ U[0, 1].

2. Sketch X(u):
k smallest ranks reachable from u.

3. Cardinality est. of u’s reachable set
given by (k− 1)/max{X(u)}.

1
0.76

2
0.92

3
0.53

4
0.97

5
0.71

6
0.85

7
0.06

8
0.32

9
0.38

0
0.52

X(0) = {0.32, 0.38, 0.52}

Properties
• Gives unbiased estimate
• with CV of 1/

√
k− 2,

• which is well concentrated.

8

Reachability Sketches [Coh97]

Idea:
Compute small structure per node from which to estimate its influence.

Reachability Sketches:
1. For every node u:
Assign indep. rank r(u) ∼ U[0, 1].

2. Sketch X(u):
k smallest ranks reachable from u.

3. Cardinality est. of u’s reachable set
given by (k− 1)/max{X(u)}.

0
0.52

1
0.76

2
0.92

3
0.53

4
0.97

5
0.71

6
0.85

8
0.32

9
0.38

7
0.06

X(0) = {0.32, 0.38, 0.52}
X(7) = {0.06, 0.38, 0.76}

Properties
• Gives unbiased estimate
• with CV of 1/

√
k− 2,

• which is well concentrated.

8

Reachability Sketches [Coh97]

Idea:
Compute small structure per node from which to estimate its influence.

Reachability Sketches:
1. For every node u:
Assign indep. rank r(u) ∼ U[0, 1].

2. Sketch X(u):
k smallest ranks reachable from u.

3. Cardinality est. of u’s reachable set
given by (k− 1)/max{X(u)}.

0
0.52

1
0.76

2
0.92

3
0.53

4
0.97

5
0.71

6
0.85

7
0.06

8
0.32

9
0.38

X(0) = {0.32, 0.38, 0.52}
X(7) = {0.06, 0.38, 0.76}

Properties
• Gives unbiased estimate
• with CV of 1/

√
k− 2,

• which is well concentrated.

9

Combined Reachability Sketches

Combined Reachability Sketches
• Augments reachability sketches to multiple propagation instances.
• Key difference:
Assign rank value for every node/instance pair r(u, i) ∼ U[0, 1].

• Sketch X(u):
k smallest ranks from reachable sets over all propagation instances.

• Enables estimate on union of these reachable sets.

⇒ Estimated influence of node u using ℓ instances:

Ĩnf(u) = 1
ℓ

(k− 1)
max{X(u)} .

9

Combined Reachability Sketches

Combined Reachability Sketches
• Augments reachability sketches to multiple propagation instances.
• Key difference:
Assign rank value for every node/instance pair r(u, i) ∼ U[0, 1].

• Sketch X(u):
k smallest ranks from reachable sets over all propagation instances.

• Enables estimate on union of these reachable sets.

⇒ Estimated influence of node u using ℓ instances:

Ĩnf(u) = 1
ℓ

(k− 1)
max{X(u)} .

10

Influence Maximization

11

Sketch-Based Influence Maximization (SKIM)

Paradigm:
1. Approximate greedy algorithm.
2. Use (partial) sketches for influence estimation.

Build sketches in reverse fashion:
• For each node/instance pairs (u, i) from smallest to largest rank:
• Run reverse BFS from u in propagation instance G(i).
• Add r(u, i) to sketch X(v) of every scanned node v.

First node v∗ for which |X(v∗)| = k has highest marginal influence whp.

• Pause sketch building process.
• Return v∗ as next node of influence ordering.

11

Sketch-Based Influence Maximization (SKIM)

Paradigm:
1. Approximate greedy algorithm.
2. Use (partial) sketches for influence estimation.

Build sketches in reverse fashion:
• For each node/instance pairs (u, i) from smallest to largest rank:
• Run reverse BFS from u in propagation instance G(i).
• Add r(u, i) to sketch X(v) of every scanned node v.

First node v∗ for which |X(v∗)| = k has highest marginal influence whp.

• Pause sketch building process.
• Return v∗ as next node of influence ordering.

11

Sketch-Based Influence Maximization (SKIM)

Paradigm:
1. Approximate greedy algorithm.
2. Use (partial) sketches for influence estimation.

Build sketches in reverse fashion:
• For each node/instance pairs (u, i) from smallest to largest rank:
• Run reverse BFS from u in propagation instance G(i).
• Add r(u, i) to sketch X(v) of every scanned node v.

First node v∗ for which |X(v∗)| = k has highest marginal influence whp.

• Pause sketch building process.
• Return v∗ as next node of influence ordering.

11

Sketch-Based Influence Maximization (SKIM)

Paradigm:
1. Approximate greedy algorithm.
2. Use (partial) sketches for influence estimation.

Build sketches in reverse fashion:
• For each node/instance pairs (u, i) from smallest to largest rank:
• Run reverse BFS from u in propagation instance G(i).
• Add r(u, i) to sketch X(v) of every scanned node v.

First node v∗ for which |X(v∗)| = k has highest marginal influence whp.

• Pause sketch building process.
• Return v∗ as next node of influence ordering.

12

Sketch-Based Influence Maximization (SKIM)

Problem: Subsequent nodes must account for marginal influence.

Build residual problem:
• Run forward BFS from v∗ in all propagation instances.
• For every scanned node u in instance i:
• Mark (u, i) as infected, and remove r(u, i) from all sketches.

Then: Resume sketch-building process, but skipping infected pairs.

Engineering the Algorithm:
• Only maintain size of sketches.
Updated by incrementing/decrementing a counter per node.

• Maintain a reverse index for each r(u, i)
to enable quickly decrementing relevant counters.

12

Sketch-Based Influence Maximization (SKIM)

Problem: Subsequent nodes must account for marginal influence.

Build residual problem:
• Run forward BFS from v∗ in all propagation instances.
• For every scanned node u in instance i:
• Mark (u, i) as infected, and remove r(u, i) from all sketches.

Then: Resume sketch-building process, but skipping infected pairs.

Engineering the Algorithm:
• Only maintain size of sketches.
Updated by incrementing/decrementing a counter per node.

• Maintain a reverse index for each r(u, i)
to enable quickly decrementing relevant counters.

12

Sketch-Based Influence Maximization (SKIM)

Problem: Subsequent nodes must account for marginal influence.

Build residual problem:
• Run forward BFS from v∗ in all propagation instances.
• For every scanned node u in instance i:
• Mark (u, i) as infected, and remove r(u, i) from all sketches.

Then: Resume sketch-building process, but skipping infected pairs.

Engineering the Algorithm:
• Only maintain size of sketches.
Updated by incrementing/decrementing a counter per node.

• Maintain a reverse index for each r(u, i)
to enable quickly decrementing relevant counters.

12

Sketch-Based Influence Maximization (SKIM)

Problem: Subsequent nodes must account for marginal influence.

Build residual problem:
• Run forward BFS from v∗ in all propagation instances.
• For every scanned node u in instance i:
• Mark (u, i) as infected, and remove r(u, i) from all sketches.

Then: Resume sketch-building process, but skipping infected pairs.

Engineering the Algorithm:
• Only maintain size of sketches.
Updated by incrementing/decrementing a counter per node.

• Maintain a reverse index for each r(u, i)
to enable quickly decrementing relevant counters.

13

Influence Oracles

14

Influence Oracles

Two Stage Approach
1. Preprocessing:
Build and store full combined reachability sketches X(u) for all nodes u.

2. Queries:
Estimate influence of S using only sketches X(u) for u ∈ S.

15

Preprocessing

Reachability Sketches [Coh97]:
• Process nodes u by increasing rank.
• Run reverse BFS from u.
• For each scanned node v:
If |X(v)| < k, add r(u) to X(v), otherwise prune at v.

⇒ Running time is O(k|V|).

Combined Reachability Sketches:
• Assign ranks to every vertex/instance pair a priori.
• Compute Xi(u) for each instance i separately.
• Merge k smallest ranks from all Xi(u) into X(u).
• Subsequent computation and merging⇒ O(k|V|) working memory.

15

Preprocessing

Reachability Sketches [Coh97]:
• Process nodes u by increasing rank.
• Run reverse BFS from u.
• For each scanned node v:
If |X(v)| < k, add r(u) to X(v), otherwise prune at v.

⇒ Running time is O(k|V|).

Combined Reachability Sketches:
• Assign ranks to every vertex/instance pair a priori.
• Compute Xi(u) for each instance i separately.
• Merge k smallest ranks from all Xi(u) into X(u).
• Subsequent computation and merging⇒ O(k|V|) working memory.

16

Query

Challenge: Given S, must estimate union of reachable sets for all u ∈ S.

Solution:
• Determine k smallest ranks X from all X(u) for u ∈ S.

⇒ Unbiased cardinality estimate of union: (k− 1)/max{X}.
Dividing by ℓ gives estimate on influence of S.

• Running time: O(k|S|).

Improved Estimator:
• Exploit all available rank values (instead of only max{X}) [CK09].
• Running time: O(k|S| log |S|).
• Improves CV by a factor of up to

√
|S|.

16

Query

Challenge: Given S, must estimate union of reachable sets for all u ∈ S.

Solution:
• Determine k smallest ranks X from all X(u) for u ∈ S.

⇒ Unbiased cardinality estimate of union: (k− 1)/max{X}.
Dividing by ℓ gives estimate on influence of S.

• Running time: O(k|S|).

Improved Estimator:
• Exploit all available rank values (instead of only max{X}) [CK09].
• Running time: O(k|S| log |S|).
• Improves CV by a factor of up to

√
|S|.

16

Query

Challenge: Given S, must estimate union of reachable sets for all u ∈ S.

Solution:
• Determine k smallest ranks X from all X(u) for u ∈ S.

⇒ Unbiased cardinality estimate of union: (k− 1)/max{X}.
Dividing by ℓ gives estimate on influence of S.

• Running time: O(k|S|).

Improved Estimator:
• Exploit all available rank values (instead of only max{X}) [CK09].
• Running time: O(k|S| log |S|).
• Improves CV by a factor of up to

√
|S|.

17

Experiments

18

Influence Maximization: SKIM

Influence [%] Running time [sec]

1000 seeds 1000 seeds n seeds

Instance |A| [·103] SKIM IRIE SKIM IRIE SKIM

AstroPh 239.3 45.9 46.5 1.0 4.3 1.9
Epinions 508.8 34.4 34.1 1.6 10.3 6.7
Slashdot 828.2 52.1 52.3 1.9 19.8 7.5
Gowalla 1 900.7 30.9 31.1 3.5 75.2 21.5
TwitterFollowers 14 855.9 17.2 17.5 10.7 388.5 85.1
LiveJournal 68 475.4 6.8 6.7 31.1 4 576.5 933.0
Orkut 234 370.2 12.1 11.5* 102.9 DNF (915) 1 197.2
Friendster 1 806 067.1 15.4 8.8* 1 308.5 DNF (43) 19 254.2
Twitter 1 468 364.9 38.0 25.3* 1 912.8 DNF (92) 11 558.8
Slovakia 1 930 292.9 25.9 16.7* 621.4 DNF (230) 11 679.3

Parameters: k = 64, ℓ = 64. Machine: 1 core of Xeon E5-2690 @ 2.9GHz; 384GiB RAM.

IRIE ≡ state-of-the-art heuristic [JHC12].
DNF ≡ does not finish within 2 hours.

19

Full Influence Permutations: Influence

0.1 1 10 100

20
40

60
80

10
0

Seed set size [%]

In
flu
en
ce
[%
]

Epinions Slashdot
TwitterF’s LiveJournal
Orkut Friendster
Twitter Slovakia⊤

20

Full Influence Permutations: Running Time

0.1 1 10 100

0
25

50
75

10
0

Seed set size [%]

Ru
nn
in
g
tim

e
[%
]

Epinions Slashdot
TwitterF’s LiveJournal
Orkut Friendster
Twitter Slovakia⊤

21

Influence Oracle

Preproc. Queries

1 Seed 50 Seeds 1000 seeds

Time Space Time Err. Time Err. Time Err.
Instance [sec] [MiB] [μs] [%] [μs] [%] [μs] [%]

AstroPh 4 7.2 1.6 8.5 166.7 2.1 4 658.3 0.5
Epinions 10 37.1 1.3 5.2 155.0 3.4 5 011.1 1.1
Slashdot 20 37.8 1.5 6.0 155.2 3.9 4 982.3 1.0
Gowalla 46 96.0 1.5 7.3 179.8 3.2 5 275.6 1.1
TwitterFollowers 229 223.0 2.1 7.0 190.2 3.3 5 061.8 0.8
LiveJournal 2 064 2 367.0 2.0 7.1 189.6 3.0 5 168.3 0.9

Parameters: k = 64, ℓ = 64. Machine: 1 core of Xeon E5-2690 @ 2.9GHz; 384GiB RAM.

22

Conclusion

Influence Maximization: SKIM
• Simple algorithm to compute full influence permutation of nodes.
• Exploits theory of combined reachability sketches.
• Every prefix approximates maximum influence for its size.
• Fast and Practical: Scales to graphs with billions of edges.
• Can be extended to adaptively set k for given error bound.
See paper for details.

Influence Oracle:
• Computes combined reachability sketches for all nodes.
• Influence estimation for sets of seed nodes form sketches only.
• Fast and practical: Preprocessing in minutes–hours; queries in μs–ms.

22

Conclusion

Influence Maximization: SKIM
• Simple algorithm to compute full influence permutation of nodes.
• Exploits theory of combined reachability sketches.
• Every prefix approximates maximum influence for its size.
• Fast and Practical: Scales to graphs with billions of edges.
• Can be extended to adaptively set k for given error bound.
See paper for details.

Influence Oracle:
• Computes combined reachability sketches for all nodes.
• Influence estimation for sets of seed nodes form sketches only.
• Fast and practical: Preprocessing in minutes–hours; queries in μs–ms.

23

Thank you!
Paper at:
http://arxiv.org/abs/1408.6282

QR code generated on http://qrcode.littleidiot.be

http://arxiv.org/abs/1408.6282

24

Bibliography I

C. Borg, M. Brautbar, J. Chayes, and B. Lucier.
Maximizing social influence in nearly optimal time.
In SODA, 2014.
E. Cohen and H. Kaplan.
Leveraging discarded samples for tighter estimation of multiple-set aggregates.
In ACM SIGMETRICS, 2009.
E. Cohen.
Size-estimation framework with applications to transitive closure and reachability.
Journal of Computer and System Sciences, 55:441–453, 1997.

W. Chen, C. Wang, and Y. Wang.
Scalable influence maximization for prevalent viral marketing in large-scale social networks.
In KDD. ACM, 2010.
W. Chen, Y. Wang, and S. Yang.
Efficient influence maximization in social networks.
In KDD. ACM, 2009.
J. Goldenberg, B. Libai, and E. Muller.
Talk of the network: A complex systems look at the underlying process of word-of-mouth.
Marketing Letters, 12(3), 2001.

K. Jung, W. Heo, and W. Chen.
Irie: Scalable and robust influence maximization in social networks.
In ICDM. ACM, 2012.

25

Bibliography II

D. Kempe, J. M. Kleinberg, and É. Tardos.
Maximizing the spread of influence through a social network.
In KDD. ACM, 2003.
J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and Glance N.
Cost-effective outbreak detection in networks.
In KDD. ACM, 2007.
M. Richardson and P. Domingos.
Mining knowledge-sharing sites for viral marketing.
In KDD. ACM, 2002.
Y. Tang, X. Xiao, and Y. Shi.
Influence maximization: Near-optimal time complexity meets practical efficiency.
In SIGMOD, 2014.

