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Influence

Influence
• spread of contagion, information diffusion, spread of infection, …
• Studied in social, biological or physical networks, …

Applications:
• Viral marketing, product placement [GLM01, RD02],
• sensor placement in water distribution networks for contamination
detection [LKG+07],

• …

Various infection models exist.
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Binary Independent Cascade Model [GLM01, KKT03]

Input:
• Directed graph G = (V, E) with
• infection probabilities p(u, v)
for every edge (u, v) ∈ E.

Interpretation:
• Edge (u, v) is live with probability p(u, v).
• In live case: u is infected⇒ v is infected.
• Set of live edges forms a propagation instance.

Definition of Influence
• Given a set S of seed nodes:
• Expected (over prop. instances) number of reachable nodes from S.
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Considered Problems

1. Influence Computation
• Given a seed node set S:
• What is the influence of S in G?

2. Influence Maximization
• Given a number N:
• Compute sequence S of seed nodes
of length N such that

• influence for every prefix of S
close to maximum for its size.
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Simulation-Based Approach

Problem: Working directly with the probabilistic model is challenging.

Simulation-Based Approach [KKT03]
• Independently draw ℓ propagation instances G(i)

using the given edge probabilities.
• Influence in instance i: # nodes reachable in G(i).
Can be computed with BFS from S.

• Total Influence: Average (over instances) size of reachable sets.

Properties
• Average influence is unbiased estimate and
• converges to the actual influence.
• Approach also handles arbitrary propagation instances;
e.g., for capturing traces from more complex influence models.
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Related Work

Greedy Algorithm [KKT03]
• Uses simulation-based approach.
• In each iteration: Add to S node with maximal marginal influence
taking into account the current seed nodes.

• Evaluating influence requires graph searches on all instances.
Optimizations, such as using lazy evaluation, exist [LKG+07].

⇒ Scales very poorly, even for medium-sized graphs [CWW10].

Other Algorithms – usually approximate Greedy, but…
• either have no quality guarantees [CWY09, CWW10, JHC12],
• are not practical [BBCL14],
• or do not compute full sequence of max. influence nodes [TXS14].

Existing approaches either slow or without guarantees on quality.
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Our Goals

For influence maximization we want an algorithm that…
• computes a full influence permutation,
• works with arbitrary propagation instances,
• scales well to graphs with billions of edges,
• has guarantees on the quality.

We want an influence oracle that…
• uses near linear time preprocessing
and near linear storage

• quickly estimates for any seed set S its influence
• with provably small relative error.
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Reachability Sketches [Coh97]

Idea:
Compute small structure per node from which to estimate its influence.

Reachability Sketches:
1. For every node u:
Assign indep. rank r(u) ∼ U[0, 1].

2. Sketch X(u):
k smallest ranks reachable from u.

3. Cardinality est. of u’s reachable set
given by (k− 1)/max{X(u)}.

Properties
• Gives unbiased estimate
• with CV of 1/

√
k− 2,

• which is well concentrated.
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Combined Reachability Sketches

Combined Reachability Sketches
• Augments reachability sketches to multiple propagation instances.
• Key difference:
Assign rank value for every node/instance pair r(u, i) ∼ U[0, 1].

• Sketch X(u):
k smallest ranks from reachable sets over all propagation instances.

• Enables estimate on union of these reachable sets.

⇒ Estimated influence of node u using ℓ instances:

Ĩnf(u) = 1
ℓ

(k− 1)
max{X(u)} .
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Influence Maximization
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Sketch-Based Influence Maximization (SKIM)

Paradigm:
1. Approximate greedy algorithm.
2. Use (partial) sketches for influence estimation.

Build sketches in reverse fashion:
• For each node/instance pairs (u, i) from smallest to largest rank:
• Run reverse BFS from u in propagation instance G(i).
• Add r(u, i) to sketch X(v) of every scanned node v.

First node v∗ for which |X(v∗)| = k has highest marginal influence whp.

• Pause sketch building process.
• Return v∗ as next node of influence ordering.
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Sketch-Based Influence Maximization (SKIM)

Problem: Subsequent nodes must account for marginal influence.

Build residual problem:
• Run forward BFS from v∗ in all propagation instances.
• For every scanned node u in instance i:
• Mark (u, i) as infected, and remove r(u, i) from all sketches.

Then: Resume sketch-building process, but skipping infected pairs.

Engineering the Algorithm:
• Only maintain size of sketches.
Updated by incrementing/decrementing a counter per node.

• Maintain a reverse index for each r(u, i)
to enable quickly decrementing relevant counters.
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Influence Oracles
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Influence Oracles

Two Stage Approach
1. Preprocessing:
Build and store full combined reachability sketches X(u) for all nodes u.

2. Queries:
Estimate influence of S using only sketches X(u) for u ∈ S.
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Preprocessing

Reachability Sketches [Coh97]:
• Process nodes u by increasing rank.
• Run reverse BFS from u.
• For each scanned node v:
If |X(v)| < k, add r(u) to X(v), otherwise prune at v.

⇒ Running time is O(k|V|).

Combined Reachability Sketches:
• Assign ranks to every vertex/instance pair a priori.
• Compute Xi(u) for each instance i separately.
• Merge k smallest ranks from all Xi(u) into X(u).
• Subsequent computation and merging⇒ O(k|V|) working memory.



15

Preprocessing

Reachability Sketches [Coh97]:
• Process nodes u by increasing rank.
• Run reverse BFS from u.
• For each scanned node v:
If |X(v)| < k, add r(u) to X(v), otherwise prune at v.

⇒ Running time is O(k|V|).

Combined Reachability Sketches:
• Assign ranks to every vertex/instance pair a priori.
• Compute Xi(u) for each instance i separately.
• Merge k smallest ranks from all Xi(u) into X(u).
• Subsequent computation and merging⇒ O(k|V|) working memory.



16

Query

Challenge: Given S, must estimate union of reachable sets for all u ∈ S.

Solution:
• Determine k smallest ranks X from all X(u) for u ∈ S.

⇒ Unbiased cardinality estimate of union: (k− 1)/max{X}.
Dividing by ℓ gives estimate on influence of S.

• Running time: O(k|S|).

Improved Estimator:
• Exploit all available rank values (instead of only max{X}) [CK09].
• Running time: O(k|S| log |S|).
• Improves CV by a factor of up to

√
|S|.
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Experiments
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Influence Maximization: SKIM

Influence [%] Running time [sec]

1000 seeds 1000 seeds n seeds

Instance |A| [·103] SKIM IRIE SKIM IRIE SKIM

AstroPh 239.3 45.9 46.5 1.0 4.3 1.9
Epinions 508.8 34.4 34.1 1.6 10.3 6.7
Slashdot 828.2 52.1 52.3 1.9 19.8 7.5
Gowalla 1 900.7 30.9 31.1 3.5 75.2 21.5
TwitterFollowers 14 855.9 17.2 17.5 10.7 388.5 85.1
LiveJournal 68 475.4 6.8 6.7 31.1 4 576.5 933.0
Orkut 234 370.2 12.1 11.5* 102.9 DNF (915) 1 197.2
Friendster 1 806 067.1 15.4 8.8* 1 308.5 DNF (43) 19 254.2
Twitter 1 468 364.9 38.0 25.3* 1 912.8 DNF (92) 11 558.8
Slovakia 1 930 292.9 25.9 16.7* 621.4 DNF (230) 11 679.3

Parameters: k = 64, ℓ = 64. Machine: 1 core of Xeon E5-2690 @ 2.9GHz; 384GiB RAM.

IRIE ≡ state-of-the-art heuristic [JHC12].
DNF ≡ does not finish within 2 hours.
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Full Influence Permutations: Influence
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Full Influence Permutations: Running Time
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Influence Oracle

Preproc. Queries

1 Seed 50 Seeds 1000 seeds

Time Space Time Err. Time Err. Time Err.
Instance [sec] [MiB] [μs] [%] [μs] [%] [μs] [%]

AstroPh 4 7.2 1.6 8.5 166.7 2.1 4 658.3 0.5
Epinions 10 37.1 1.3 5.2 155.0 3.4 5 011.1 1.1
Slashdot 20 37.8 1.5 6.0 155.2 3.9 4 982.3 1.0
Gowalla 46 96.0 1.5 7.3 179.8 3.2 5 275.6 1.1
TwitterFollowers 229 223.0 2.1 7.0 190.2 3.3 5 061.8 0.8
LiveJournal 2 064 2 367.0 2.0 7.1 189.6 3.0 5 168.3 0.9

Parameters: k = 64, ℓ = 64. Machine: 1 core of Xeon E5-2690 @ 2.9GHz; 384GiB RAM.
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Conclusion

Influence Maximization: SKIM
• Simple algorithm to compute full influence permutation of nodes.
• Exploits theory of combined reachability sketches.
• Every prefix approximates maximum influence for its size.
• Fast and Practical: Scales to graphs with billions of edges.
• Can be extended to adaptively set k for given error bound.
See paper for details.

Influence Oracle:
• Computes combined reachability sketches for all nodes.
• Influence estimation for sets of seed nodes form sketches only.
• Fast and practical: Preprocessing in minutes–hours; queries in μs–ms.
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Thank you!
Paper at:
http://arxiv.org/abs/1408.6282

QR code generated on http://qrcode.littleidiot.be

http://arxiv.org/abs/1408.6282
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