Sketch-based Influence Maximization and Computation: Scaling up with Guarantees

Edith Cohen Daniel Delling Thomas Pajor Renato Werneck

Microsoft Research

4 November 2014

Influence

Influence

- spread of contagion, information diffusion, spread of infection, ...
- Studied in social, biological or physical networks, ...

Applications:

- Viral marketing, product placement [GLM01, RD02],
- sensor placement in water distribution networks for contamination detection [LKG+07],

• ...

Influence

Influence

- spread of contagion, information diffusion, spread of infection, ...
- · Studied in social, biological or physical networks, ...

Applications:

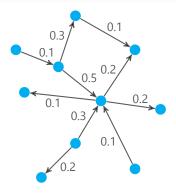
- Viral marketing, product placement [GLM01, RD02],
- sensor placement in water distribution networks for contamination detection [LKG⁺07],

• ...

Various infection models exist.

Input:

- Directed graph G = (V, E) with
- infection probabilities p(u, v) for every edge $(u, v) \in E$.

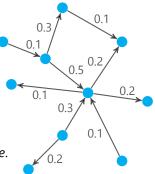


Input:

- Directed graph G = (V, E) with
- infection probabilities p(u, v) for every edge $(u, v) \in E$.

Interpretation:

- Edge (u, v) is *live* with probability p(u, v).
- In live case: u is infected $\Rightarrow v$ is infected.
- Set of live edges forms a propagation instance.

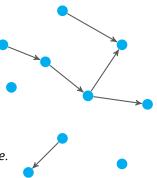


Input:

- Directed graph G = (V, E) with
- infection probabilities p(u, v) for every edge $(u, v) \in E$.

Interpretation:

- Edge (u, v) is *live* with probability p(u, v).
- In live case: u is infected $\Rightarrow v$ is infected.
- Set of live edges forms a propagation instance.



Input:

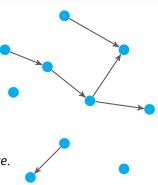
- Directed graph G = (V, E) with
- infection probabilities p(u, v) for every edge $(u, v) \in E$.

Interpretation:

- Edge (u, v) is *live* with probability p(u, v).
- In live case: u is infected $\Rightarrow v$ is infected.
- Set of live edges forms a propagation instance.

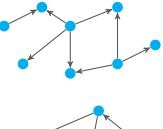
Definition of Influence

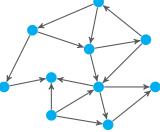
- Given a set S of seed nodes:
- Expected (over prop. instances) number of reachable nodes from S.



- 1. Influence Computation
 - Given a seed node set S:
 - What is the influence of S in G?

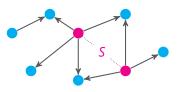
- Given a number N:
- Compute *sequence S* of seed nodes of length *N* such that
- influence for every *prefix* of *S* close to maximum for its size.

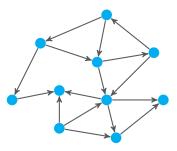




- 1. Influence Computation
 - Given a seed node set S:
 - What is the influence of S in G?

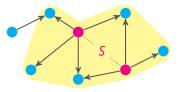
- Given a number N:
- Compute *sequence S* of seed nodes of length *N* such that
- influence for every *prefix* of *S* close to maximum for its size.

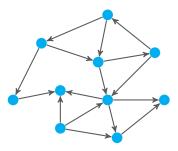




- 1. Influence Computation
 - Given a seed node set S:
 - What is the influence of S in G?

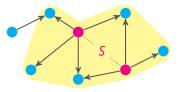
- Given a number N:
- Compute *sequence S* of seed nodes of length *N* such that
- influence for every *prefix* of *S* close to maximum for its size.

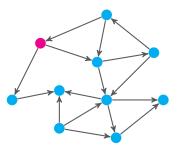




- 1. Influence Computation
 - Given a seed node set S:
 - What is the influence of S in G?

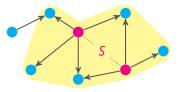
- Given a number N:
- Compute *sequence S* of seed nodes of length *N* such that
- influence for every *prefix* of *S* close to maximum for its size.

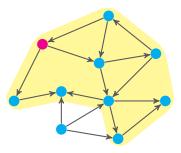




- 1. Influence Computation
 - Given a seed node set S:
 - What is the influence of S in G?

- Given a number N:
- Compute *sequence S* of seed nodes of length *N* such that
- influence for every *prefix* of *S* close to maximum for its size.





Simulation-Based Approach

Problem: Working directly with the probabilistic model is challenging.

Simulation-Based Approach

Problem: Working directly with the probabilistic model is challenging.

Simulation-Based Approach [KKT03]

- Independently draw ℓ propagation instances $G^{(i)}$ using the given edge probabilities.
- Influence in instance *i*: # nodes reachable in *G*^(*i*). Can be computed with BFS from *S*.
- Total Influence: Average (over instances) size of reachable sets.

Simulation-Based Approach

Problem: Working directly with the probabilistic model is challenging.

Simulation-Based Approach [KKT03]

- Independently draw l propagation instances G⁽ⁱ⁾ using the given edge probabilities.
- Influence in instance *i*: # nodes reachable in *G*(*i*). Can be computed with BFS from *S*.
- Total Influence: Average (over instances) size of reachable sets.

Properties

- · Average influence is unbiased estimate and
- converges to the actual influence.
- Approach also handles *arbitrary* propagation instances; e.g., for capturing traces from more complex influence models.

Related Work

Greedy Algorithm [KKT03]

- Uses simulation-based approach.
- In each iteration: Add to *S* node with maximal *marginal* influence taking into account the current seed nodes.
- Evaluating influence requires graph searches on all instances. Optimizations, such as using lazy evaluation, exist [LKG⁺07].
- \Rightarrow Scales very poorly, even for medium-sized graphs [CWW10].

Related Work

Greedy Algorithm [KKT03]

- Uses simulation-based approach.
- In each iteration: Add to *S* node with maximal *marginal* influence taking into account the current seed nodes.
- Evaluating influence requires graph searches on all instances. Optimizations, such as using lazy evaluation, exist [LKG⁺07].
- \Rightarrow Scales very poorly, even for medium-sized graphs [CWW10].

Other Algorithms – usually approximate Greedy, but...

- either have no quality guarantees [CWY09, CWW10, JHC12],
- are not practical [BBCL14],
- or do not compute full sequence of max. influence nodes [TXS14].

Related Work

Greedy Algorithm [KKT03]

- Uses simulation-based approach.
- In each iteration: Add to *S* node with maximal *marginal* influence taking into account the current seed nodes.
- Evaluating influence requires graph searches on all instances. Optimizations, such as using lazy evaluation, exist [LKG⁺07].
- \Rightarrow Scales very poorly, even for medium-sized graphs [CWW10].

Other Algorithms – usually approximate Greedy, but...

- either have no quality guarantees [CWY09, CWW10, JHC12],
- are not practical [BBCL14],
- or do not compute full sequence of max. influence nodes [TXS14].

Existing approaches either slow or without guarantees on quality.

Our Goals

For influence maximization we want an algorithm that...

- · computes a full influence permutation,
- works with arbitrary propagation instances,
- scales well to graphs with billions of edges,
- has guarantees on the quality.

We want an influence oracle that...

- uses near linear time preprocessing and near linear storage
- quickly estimates for any seed set S its influence
- with provably small relative error.

Idea:

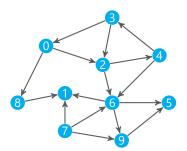
Compute small structure per node from which to estimate its influence.

Idea:

Compute small structure per node from which to estimate its influence.

Reachability Sketches:

- 1. For every node *u*: Assign indep. rank $r(u) \sim U[0, 1]$.
- Sketch X(u): k smallest ranks reachable from u.
- 3. Cardinality est. of *u*'s reachable set given by $(k 1)/\max{X(u)}$.

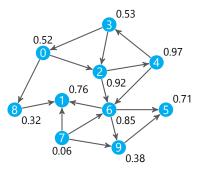


Idea:

Compute small structure per node from which to estimate its influence.

Reachability Sketches:

- 1. For every node *u*: Assign indep. rank $r(u) \sim U[0, 1]$.
- Sketch X(u): k smallest ranks reachable from u.
- 3. Cardinality est. of *u*'s reachable set given by $(k 1)/\max{X(u)}$.

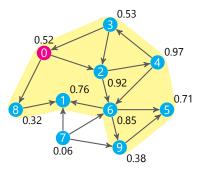


Idea:

Compute small structure per node from which to estimate its influence.

Reachability Sketches:

- 1. For every node *u*: Assign indep. rank $r(u) \sim U[0, 1]$.
- Sketch X(u): k smallest ranks reachable from u.
- 3. Cardinality est. of *u*'s reachable set given by $(k 1)/\max{X(u)}$.



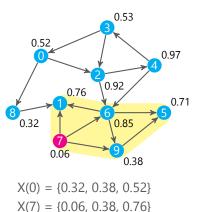
 $X(0) = \{0.32, \, 0.38, \, 0.52\}$

Idea:

Compute small structure per node from which to estimate its influence.

Reachability Sketches:

- 1. For every node *u*: Assign indep. rank $r(u) \sim U[0, 1]$.
- Sketch X(u): k smallest ranks reachable from u.
- 3. Cardinality est. of *u*'s reachable set given by $(k 1)/\max{X(u)}$.



Idea:

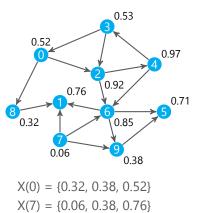
Compute small structure per node from which to estimate its influence.

Reachability Sketches:

- 1. For every node *u*: Assign indep. rank $r(u) \sim U[0, 1]$.
- Sketch X(u): k smallest ranks reachable from u.
- 3. Cardinality est. of *u*'s reachable set given by $(k 1)/\max{X(u)}$.

Properties

- · Gives unbiased estimate
- with CV of $1/\sqrt{k-2}$,
- which is well concentrated.



Combined Reachability Sketches

Combined Reachability Sketches

- Augments reachability sketches to multiple propagation instances.
- Key difference: Assign rank value for every *node/instance* pair r(u, i) ~ U[0, 1].
- Sketch X(u):
 k smallest ranks from reachable sets over all propagation instances.
- Enables estimate on union of these reachable sets.

Combined Reachability Sketches

Combined Reachability Sketches

- Augments reachability sketches to multiple propagation instances.
- Key difference: Assign rank value for every *node/instance* pair r(u, i) ~ U[0, 1].
- Sketch X(u):
 k smallest ranks from reachable sets over all propagation instances.
- Enables estimate on union of these reachable sets.

 \Rightarrow Estimated influence of node *u* using ℓ instances:

$$\widetilde{\ln f}(u) = \frac{1}{\ell} \frac{(k-1)}{\max\{X(u)\}}.$$

Paradigm:

- 1. Approximate greedy algorithm.
- 2. Use (partial) sketches for influence estimation.

Paradigm:

- 1. Approximate greedy algorithm.
- 2. Use (partial) sketches for influence estimation.

Build sketches in reverse fashion:

- For each node/instance pairs (u, i) from smallest to largest rank:
- Run reverse BFS from u in propagation instance $G^{(i)}$.
- Add r(u, i) to sketch X(v) of every scanned node v.

Paradigm:

- 1. Approximate greedy algorithm.
- 2. Use (partial) sketches for influence estimation.

Build sketches in reverse fashion:

- For each node/instance pairs (u, i) from smallest to largest rank:
- Run reverse BFS from u in propagation instance $G^{(l)}$.
- Add r(u, i) to sketch X(v) of every scanned node v.

First node v^* for which $|X(v^*)| = k$ has highest marginal influence whp.

Paradigm:

- 1. Approximate greedy algorithm.
- 2. Use (partial) sketches for influence estimation.

Build sketches in reverse fashion:

- For each node/instance pairs (u, i) from smallest to largest rank:
- Run reverse BFS from u in propagation instance $G^{(i)}$.
- Add r(u, i) to sketch X(v) of every scanned node v.

First node v^* for which $|X(v^*)| = k$ has highest marginal influence whp.

- Pause sketch building process.
- Return *v*^{*} as next node of influence ordering.

Problem: Subsequent nodes must account for marginal influence.

Problem: Subsequent nodes must account for marginal influence.

Build residual problem:

- Run *forward* BFS from v^* in all propagation instances.
- For every scanned node *u* in instance *i*:
- Mark (u, i) as infected, and remove r(u, i) from all sketches.

Problem: Subsequent nodes must account for marginal influence.

Build residual problem:

- Run *forward* BFS from v^* in all propagation instances.
- For every scanned node *u* in instance *i*:
- Mark (u, i) as infected, and remove r(u, i) from all sketches.

Then: Resume sketch-building process, but skipping infected pairs.

Problem: Subsequent nodes must account for marginal influence.

Build residual problem:

- Run *forward* BFS from v^* in all propagation instances.
- For every scanned node *u* in instance *i*:
- Mark (u, i) as infected, and remove r(u, i) from all sketches.

Then: Resume sketch-building process, but skipping infected pairs.

Engineering the Algorithm:

- Only maintain *size* of sketches. Updated by incrementing/decrementing a *counter* per node.
- Maintain a *reverse index* for each r(u, i) to enable quickly decrementing relevant counters.

Influence Oracles

Influence Oracles

Two Stage Approach

1. Preprocessing:

Build and store full combined reachability sketches X(u) for all nodes u.

2. Queries:

Estimate influence of S using only sketches X(u) for $u \in S$.

Preprocessing

Reachability Sketches [Coh97]:

- Process nodes *u* by increasing rank.
- Run reverse BFS from *u*.
- For each scanned node *v*: If |X(v)| < k, add r(u) to X(v), otherwise prune at *v*.
- \Rightarrow Running time is O(k|V|).

Preprocessing

Reachability Sketches [Coh97]:

- Process nodes *u* by increasing rank.
- Run reverse BFS from *u*.
- For each scanned node *v*: If |X(v)| < k, add r(u) to X(v), otherwise prune at *v*.
- \Rightarrow Running time is O(k|V|).

Combined Reachability Sketches:

- · Assign ranks to every vertex/instance pair a priori.
- Compute $X_i(u)$ for each instance *i* separately.
- Merge k smallest ranks from all $X_i(u)$ into X(u).
- Subsequent computation and merging $\Rightarrow O(k|V|)$ working memory.

Query

Challenge: Given *S*, must estimate *union* of reachable sets for all $u \in S$.

Query

Challenge: Given *S*, must estimate *union* of reachable sets for all $u \in S$.

Solution:

- Determine k smallest ranks X from all X(u) for $u \in S$.
- ⇒ Unbiased cardinality estimate of union: $(k 1)/\max{X}$. Dividing by ℓ gives estimate on influence of *S*.
 - Running time: O(k|S|).

Query

Challenge: Given *S*, must estimate *union* of reachable sets for all $u \in S$.

Solution:

- Determine k smallest ranks X from all X(u) for $u \in S$.
- ⇒ Unbiased cardinality estimate of union: $(k 1) / \max{X}$. Dividing by ℓ gives estimate on influence of *S*.
 - Running time: O(k|S|).

Improved Estimator:

- Exploit all available rank values (instead of only max{X}) [CK09].
- Running time: $O(k|S| \log |S|)$.
- Improves CV by a factor of up to $\sqrt{|S|}$.

Experiments

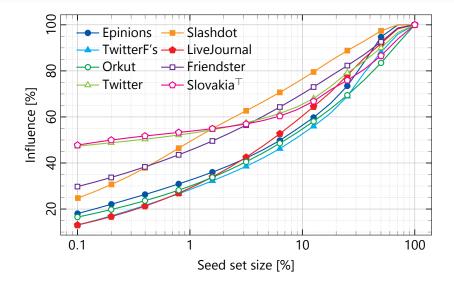
Influence Maximization: SKIM

		Influence [%] 1000 seeds		Running time [sec]			
Instance				100	n seeds		
	A [·10 ³]	SKIM	IRIE	SKIM	IRIE	SKIM	
AstroPh	239.3	45.9	46.5	1.0	4.3	1.9	
Epinions	508.8	34.4	34.1	1.6	10.3	6.7	
Slashdot	828.2	52.1	52.3	1.9	19.8	7.5	
Gowalla	1 900.7	30.9	31.1	3.5	75.2	21.5	
TwitterFollowers	14855.9	17.2	17.5	10.7	388.5	85.1	
LiveJournal	68475.4	6.8	6.7	31.1	4 576.5	933.0	
Orkut	234 370.2	12.1	11.5*	102.9	DNF (915)	1 1 97.2	
Friendster	1806067.1	15.4	8.8*	1 308.5	DNF (43)	19254.2	
Twitter	1468364.9	38.0	25.3*	1912.8	DNF (92)	11558.8	
Slovakia	1 930 292.9	25.9	16.7*	621.4	DNF (230)	11 679.3	

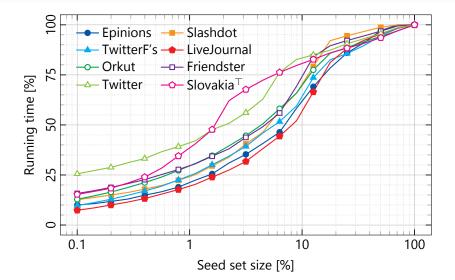
Parameters: k = 64, $\ell = 64$. Machine: 1 core of Xeon E5-2690 @ 2.9 GHz; 384 GiB RAM.

IRIE \equiv state-of-the-art heuristic [JHC12]. DNF \equiv does not finish within 2 hours.

Full Influence Permutations: Influence



Full Influence Permutations: Running Time



Influence Oracle

	Preproc.		Queries					
			1 Se	ed	ed 50 Seeds		1000 seeds	
Instance	Time [sec]	Space [MiB]	Time [μs]	Err. [%]	Time [μs]	Err. [%]	Time [µs]	Err. [%]
AstroPh	4	7.2	1.6	8.5	166.7	2.1	4 658.3	0.5
Epinions	10	37.1	1.3	5.2	155.0	3.4	5011.1	1.1
Slashdot	20	37.8	1.5	6.0	155.2	3.9	4982.3	1.0
Gowalla	46	96.0	1.5	7.3	179.8	3.2	5 275.6	1.1
TwitterFollowers LiveJournal	229 2064	223.0 2 367.0	2.1 2.0	7.0 7.1	190.2 189.6	3.3 3.0	5 061.8 5 168.3	0.8 0.9

Parameters: k = 64, $\ell = 64$. Machine: 1 core of Xeon E5-2690 @ 2.9 GHz; 384 GiB RAM.

Conclusion

Influence Maximization: SKIM

- Simple algorithm to compute *full influence permutation* of nodes.
- Exploits theory of combined reachability sketches.
- Every prefix approximates maximum influence for its size.
- Fast and Practical: Scales to graphs with billions of edges.
- Can be extended to *adaptively* set *k* for given error bound. See paper for details.

Conclusion

Influence Maximization: SKIM

- Simple algorithm to compute *full influence permutation* of nodes.
- Exploits theory of combined reachability sketches.
- Every prefix approximates maximum influence for its size.
- Fast and Practical: Scales to graphs with billions of edges.
- Can be extended to *adaptively* set *k* for given error bound. See paper for details.

Influence Oracle:

- Computes combined reachability sketches for all nodes.
- Influence estimation for sets of seed nodes form sketches only.
- Fast and practical: Preprocessing in minutes-hours; queries in µs-ms.

Thank you!

Paper at:

http://arxiv.org/abs/1408.6282

Bibliography I

C. Borg, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence in nearly optimal time. In SODA, 2014.

E. Cohen and H. Kaplan.

Leveraging discarded samples for tighter estimation of multiple-set aggregates. In ACM SIGMETRICS, 2009.

E. Cohen.

Size-estimation framework with applications to transitive closure and reachability. *Journal of Computer and System Sciences*, 55:441–453, 1997.

W. Chen, C. Wang, and Y. Wang.

Scalable influence maximization for prevalent viral marketing in large-scale social networks. In KDD. ACM, 2010.

W. Chen, Y. Wang, and S. Yang.

Efficient influence maximization in social networks. In *KDD*. ACM, 2009.

J. Goldenberg, B. Libai, and E. Muller.

Talk of the network: A complex systems look at the underlying process of word-of-mouth. *Marketing Letters*, 12(3), 2001.

K. Jung, W. Heo, and W. Chen.

Irie: Scalable and robust influence maximization in social networks. In *ICDM*. ACM, 2012.

Bibliography II

D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. In *KDD*. ACM, 2003.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and Glance N. Cost-effective outbreak detection in networks. In *KDD*, ACM, 2007.

M. Richardson and P. Domingos.

Mining knowledge-sharing sites for viral marketing. In *KDD*. ACM, 2002.

Y. Tang, X. Xiao, and Y. Shi.

Influence maximization: Near-optimal time complexity meets practical efficiency. In SIGMOD, 2014.