
Computing Classic Closeness
Centrality, at Scale

Edith Cohen

Joint with: Thomas Pajor,

Daniel Delling, Renato Werneck

Very Large Graphs

 Model relations and interactions (edges)
between entities (nodes)

 Call detail, email exchanges,

 Hyperlinks

 Social Networks (friend, follow, like),

 Commercial transactions,…

 Need for scalable analytics

Centrality
Centrality of a node measures its importance.

Applications: ranking, scoring, characterize
network properties.

Several structural centrality definitions:

 Betweeness: effectiveness in connecting pairs of
nodes

 Degree: Activity level

 Eigenvalue: Reputation

 Closeness: Ability to reach/influence others.

Closeness Centrality

Classic Closeness Centrality [(Bavelas 1950,
Beaucahmp 1965, Sabidussi 1966)]

(Inverse of) the average distance to all other nodes

𝐵−1 𝑣 =
𝑛 − 1

 𝑑𝑢𝑣𝑢∈𝑉

Maximum centrality node is the 1-median

Importance measure of a node that is a function
of the distances from a node to all other nodes.

Computing Closeness Centrality

Run Dijkstra’s algorithm from source 𝑣.

 Compute sum of distances 𝑑𝑢𝑣𝑢∈𝑉 from 𝑣 to
all other nodes

𝐵 𝑣 =
 𝑑𝑢𝑣𝑢∈𝑉

𝑛 − 1

!! Does not scale when we want 𝐵 𝑣 for many or
all nodes in a large graph

Centrality of 𝑣 using Dijkstra

𝑣

Exact, but does not scale for many nodes on large graphs.

Goals

Scalable algorithm to compute/estimate
centrality scores of all nodes

 Accurate: Small relative error: within 1 + 𝜖
with high probability

Scalable:

 Processing cost 𝑂(𝐺) (can depend on 𝜖−1)

 Constant memory per node, independent of 𝜖

Have to settle for approximation: Exact computation,
even of the maximum centrality node (1-median) seems
as hard as APSP [Abboud Vassilevska-Williams 2015]

Algorithmic Overview

Approach I: Sampling

 Properties: good for “close” distances

Approach II: Pivoting

 Properties: good for “far” distances

Hybrid: Best of all worlds

Approach I: Sampling

 uniform sample 𝐶 of 𝑘 nodes

 Ran Dijkstra from each 𝑢 ∈ 𝐶 (Gives us exact
𝐵(𝑢) for 𝑢 ∈ 𝐶)

For 𝑣 ∈ 𝑉 ∖ 𝐶 estimate 𝐵(𝑣) by the average
distance to sampled nodes

𝐵 𝑣 =
 𝑑𝑢𝑣𝑢∈𝐶

𝑘

 [EW 2001, OCL2008,Indyk1999,Thorup2001]

C
o

m
p

u
ta

ti
o

n

Es
ti

m
at

io
n

Sampling

𝐵(𝑣) ?

𝑣

Sampling Estimator 𝐵 (𝑣)

𝑣

Sampling: Properties

Unbiased

Can have large variance -- uniform sample can miss
heavy (far) items. Estimate quality depends on
distribution of distances from 𝒗

Works! sample average concentrated population average

𝒅𝒗𝒖

maximum = O(median)

Sampling: Properties

Heavy tail -- sample average has high variance – relative error

𝒅𝒗𝒖

Unbiased

Can have large variance -- uniform sample can miss
heavy (far) items. Estimate quality depends on
distribution of distances from 𝒗

Approach II: Pivoting

uniform sample 𝐶 of 𝑘 nodes

 Ran Dijkstra from each 𝑢 ∈ 𝐶 (Gives us exact
𝐵(𝑢) for 𝑢 ∈ 𝐶)

For 𝑣 ∈ 𝑉 ∖ 𝐶 , find closest sample node
“pivot” 𝑐 𝑣 ∈ 𝐶 .

estimate using pivot average distance

𝐵 𝑣 = 𝐵(𝑐 𝑣)

C
o

m
p

u
ta

ti
o

n

Es
ti

m
at

io
n

Pivoting

𝐵(𝑢1)

Pivoting

𝐵(𝑢1)

𝐵(𝑢2)

Pivoting

𝐵(𝑢1)

𝐵(𝑢2)

𝐵(𝑢3)

𝐵(𝑢4)

𝐵(𝑢𝑘)

Pivoting 𝐵 (𝑣)

𝐵(𝑢1)

𝐵(𝑢2)

𝐵(𝑢3)

𝐵(𝑢4)

𝐵(𝑢𝑘)

𝑣

Inherit centrality of pivot (closest sampled node)

Pivoting: properties

Estimate is within ±𝑑𝑣𝑐 𝑣 of true 𝐵(𝑣)

Proof:

 triangle inequality: for all 𝑧,
𝑑𝑐 𝑣 𝑧 − 𝑑𝑣𝑐 𝑣 ≤ 𝑑𝑣𝑧 ≤ 𝑑𝑐 𝑣 𝑧 + 𝑑𝑣𝑐 𝑣

 Therefore 𝐵 𝑣 − 𝐵 𝑐 𝑣 ≤ 𝑑𝑣𝑐 𝑣

𝑐(𝑣)

𝑣

𝑧

Pivoting: properties

𝐵 𝑣 = 𝑑𝑣𝑐 𝑣 + 𝐵(𝑐 𝑣) ≤ 2𝑑𝑣𝑐 𝑣 + 𝐵 𝑣

≤ 𝐵 𝑣 ⋅ (1 +
2

1 −

log 𝑛

𝑘

)

Estimate is within ±𝑑𝑣𝑐 𝑣 of true 𝐵(𝑣)

Proof: WHP pivot is one of the
𝑛

𝑘
log 𝑛 closest nodes

⇒ 𝐵 𝑣 ≥ 1 −
log 𝑛

𝑘
𝑑𝑣𝑐(𝑣)

WHP

WHP upper bound 𝐵 𝑣 ≡ 𝑑𝑣𝑐 𝑣 + 𝐵 𝑐 𝑣
satisfies

𝐵 𝑣 ≤ 𝐵 𝑣 ≤ 4𝐵 𝑣

Triangle inequality

Pivoting: properties

Bounded relative error for any instance !
A property we could not obtain with sampling

WHP upper bound 𝐵 𝑣 = 𝑑𝑣𝑐 𝑣 + 𝐵 𝑐 𝑣
satisfies

𝐵 𝑣 ≤ 𝐵 𝑣 ≤ 4𝐵 𝑣

Estimate is within ±𝑑𝑣𝑐 𝑣 of true 𝐵(𝑣)

Pivoting vs. Sampling
Same computation/information:
 𝑘 Dijkstras from a uniform sample

 Different properties on estimate quality
 Sampling accurate when distance distribution is

concentrated.
 Pivoting accurate with heavier tail.

𝐵 𝑣 = 𝐵(𝑐 𝑣) 𝐵 𝑣 =
 𝑑𝑢𝑣𝑢∈𝐶

𝑘

But neither gives us a small relative error !

Hybrid Estimator !!
 Same computation/information as

sampling/pivoting (𝑘 Dijkstras from a uniform
sample)

 Use sample to estimate distances from 𝑣 to “close”
nodes

 Use pivot to estimate distances to “far” nodes

Idea: Look at distances of nodes from the pivot
𝑐(𝑣) (we have all these distances!)

 How to partition close/far ?

Hybrid

 Far nodes: Nodes > 𝑑𝑣𝑐(𝑣)/𝜖 from pivot, use

distance to pivot.

 We have error at most ±𝑑𝑣𝑐(𝑣) which is at most

1/(
1

𝜖
− 1) ≈ 𝜖 contribution to relative error

 Partition nodes according to their distance to the
pivot 𝑐 𝑣 :

 Close nodes: Nodes within 𝑑𝑣𝑐(𝑣)/𝜖 from pivot,
estimate using exact distances to sampled nodes
 Intuition: We “cut off” the heavy tail that was bad for

sampling

Hybrid 𝐵 (𝑣)

𝑣

Close nodes

Far nodes

𝑐(𝑣)
10x 𝑑𝑣𝑐(𝑣)

Hybrid 𝐵 (𝑣)

𝑣

6 close nodes (we know how many). Estimate using
exact distances from 𝑣 to the 2 close sampled nodes

𝑐(𝑣)

Close nodes

Hybrid 𝐵 (𝑣)

𝑣

11 far nodes (we know which and how many). Estimate
using distance from pivot c(𝑣)

𝑐(𝑣)

Far nodes

Analysis
How to set sample size 𝑘 ?

Theory: (worse-case distance distribution)
𝑘 ≈ 𝜖−3 for NRMSE 𝜖

 (× log 𝑛) for small error WHP for all nodes

Analysis (worst case)

Far nodes: Nodes > 𝑑𝑣𝑐(𝑣)/𝜖 from pivot≈ 𝜖

contribution to relative error

 Close nodes: We need 𝑘 ≈ 𝜖−3/2 samples so that
NRMSE (normalized standard error) at most 𝜖

Idea: We estimate 𝑑𝑢𝑣𝑢 𝑐𝑙𝑜𝑠𝑒 by
n

k
 𝑑𝑢𝑣𝑢 𝑐𝑙𝑜𝑠𝑒 𝑖𝑛 𝐶

 Each 𝑢 ∈ 𝐶 is sampled with 𝑝 = 𝑘/𝑛 ⇒

𝑣𝑎𝑟 𝑑 𝑢𝑣𝑢 𝑐𝑙𝑜𝑠𝑒
 ≤

𝑛

𝑘
 𝑑 𝑢𝑣

2
𝑢 𝑐𝑙𝑜𝑠𝑒

 Look at worst-case values 𝑑𝑢𝑣 ∈ [0,
𝑑𝑣𝑐 𝑣

𝜖
] that

maximize 𝑣𝑎𝑟/ 𝑑𝑢𝑣𝑢

Analysis
How to set sample size 𝑘 ?

Practice: 𝑘 ≈ 𝜖−2 works well.

What about the guarantees (want confidence
intervals) ?

Theory: (worse-case distance distribution)
𝑘 ≈ 𝜖−3
 (× log 𝑛) for small error WHP for all nodes

Adaptive Error Estimation
Idea: We use the information we have on the
actual distance distribution to obtain tighter
confidence bounds for our estimate than the
worst-case bounds.

 Far nodes: Instead of using error ±𝑑𝑣𝑐 𝑣 , use
sampled far nodes to determine if errors “cancel
out.” (some nodes closer to pivot 𝑐(𝑣) but some
closer to 𝑣.

 Close nodes: Estimate population variance
from samples.

Extension:
Adaptive Error Minimization

For a given sample size (computation
investment), and a given node, we can consider
many thresholds for partitioning into closer/far
nodes.

 We can compute an adaptive error estimate
for each threshold (based on what we know
on distribution).

 Use the estimate with smallest estimated
error.

Efficiency

 Partition “threshold” is different for different
nodes with the same pivot (since it depends
on distance to pivot).

 Can compute “suffix sums” of distances with
Dijkstra from each pivot, to compute
estimates for all nodes in 𝑂(𝑘) time per node

Given the 𝑘𝑛 distances from sampled nodes to all
others, how do we compute the estimates
efficiently?

Scalability:
Using +O(1)/node memory

 We perform 𝑘 Dijkstra’s but do not want to
store all 𝑘𝑛 distances.

 In our implementation, we reduce the
additional storage to O(1) per node by first
mapping nodes to their closest pivots. This is
equivalent to performing one more Dijkstra.

Hybrid slightly slower, but more accurate than
sampling or pivoting

Directed graphs

 Sampling works (same properties) when graph is
strongly connected.

 Pivoting breaks, even with strong connectivity.
Hybrid therefore also breaks.

 When graph is not strongly connected, basic
sampling also breaks – we may not have enough
samples from each reachability set

(Classic Closeness) Centrality is defined as (inverse of)
average distance to reachable (outbound distances) or
reaching (inbound distances) nodes only.

We design a new sampling algorithm…

…Directed graphs

Algorithm computes for each node 𝑣 its average distance
to a uniform sample of 𝑘 nodes from its reachability set.
𝑂 (𝑘|𝐺|) based on reachability sketches [C’ 1994].

(Classic Closeness) Centrality is defined as (inverse of)
average distance to reachable (outbound distances) or
reaching (inbound distances) nodes only.

 Process nodes u in random permutation order
 Run Dijkstra from u, prune at nodes already visited k times

𝐵 𝑣 = sum of distances from visiting nodes / #visitors

Directed graphs: Reachability sketch based sampling
is orders of magnitude faster with only a small error.

Extension: Metric Spaces
Basic hybrid estimator applies in any metric space:
Using 𝑘 single-source computations from a
random sample, we can estimate centrality of all
points with a small relative error.

 Perform both a forward and back Dijkstra from each
sampled node.

 Compute roundtrip distances, sort them, and apply
estimator to that.

Application: Centrality with respect to Round-trip
distances in directed strongly connected graphs:

Extension: Node weights
Weighted centrality: Nodes are heterogeneous.
Some are more important. Or more related to a
topic. Weighted centrality emphasizes more
important nodes.

𝐵 𝑣 =
 𝑤 𝑢 𝑑𝑢𝑣𝑢∈𝑉

 𝑤(𝑢)𝑢∈𝑉

Variant of Hybrid with same strong guarantees
uses a weighted (VAROPT) instead of a uniform
nodes sample.

Closeness Centrality

 Classic (penalize for far nodes)

 Distance-decay (reward for close nodes)

𝑪 𝒊 = 𝜶(𝒅𝒊𝒋) 𝜷(𝒋)

𝒋

𝑪 𝒊 = (𝒏 − 𝟏)/ 𝒅𝒊𝒋 𝜷(𝒋)

𝒋

Different techniques required: All-Distances Sketches [C’
94] work for approximating distance-decay but not classic.

Summary

 Undirected graphs (and metric spaces): We
combine sampling and pivoting to estimate
classic closeness centrality of all nodes within
a small relative error using 𝑘 single-source
computations.

 Directed graphs: Sampling based on
reachability sketches

 Implementation: minutes on real-world
graphs with hundreds of millions of edges

Future

 Estimate classic closeness centrality of all nodes
within a small relative error using fewer single-
source computations. Can do 𝑘 = 𝜖−2 log 𝑛
with adaptive choice of sources. Can we
eliminate the union bound ?

 Can we do better in metric spaces (not confined
to single source) ? Small dimension?

 Adaptive confidence bounds are applicable in
many other problems. Should be used broadly.

Thank you!

