Computing Classic Closeness Centrality, at Scale

Edith Cohen
Joint with: Thomas Pajor, Daniel Delling, Renato Werneck
Very Large Graphs

- Model relations and interactions (edges) between entities (nodes)
 - Call detail, email exchanges,
 - Hyperlinks
 - Social Networks (friend, follow, like),
 - Commercial transactions,...

- Need for scalable analytics
Centrality

- Centrality of a node measures its importance.
 Applications: ranking, scoring, characterize network properties.

- Several structural centrality definitions:
 - **Betweenness**: effectiveness in connecting pairs of nodes
 - **Degree**: Activity level
 - **Eigenvalue**: Reputation
 - **Closeness**: Ability to reach/influence others.
Closeness Centrality

Importance measure of a node that is a function of the distances from a node to all other nodes.

Classic Closeness Centrality \([(\text{Bavelas 1950, Beaucahmp 1965, Sabidussi 1966})]\)

(Inverse of) the average distance to all other nodes

\[
B^{-1}(v) = \frac{n - 1}{\sum_{u \in V} d_{uv}}
\]

Maximum centrality node is the 1-median
Computing Closeness Centrality

- Run Dijkstra’s algorithm from source v.
- Compute sum of distances $\sum_{u \in V} d_{uv}$ from v to all other nodes

$$B(v) = \frac{\sum_{u \in V} d_{uv}}{n - 1}$$

!! Does not scale when we want $B(v)$ for many or all nodes in a large graph
Centrality of ν using Dijkstra

Exact, but does not scale for many nodes on large graphs.
Goals

- Scalable algorithm to compute/estimate centrality scores of all nodes

- Accurate: Small relative error: within $(1 + \epsilon)$ with high probability

- Scalable:
 - Processing cost $O(|G|)$ (can depend on ϵ^{-1})
 - Constant memory per node, independent of ϵ

Have to settle for approximation: Exact computation, even of the maximum centrality node (1-median) seems as hard as APSP [Abboud Vassilevska-Williams 2015]
Algorithmic Overview

- **Approach I: Sampling**
 - Properties: good for “close” distances

- **Approach II: Pivoting**
 - Properties: good for “far” distances

- **Hybrid**: Best of all worlds
Approach I: Sampling

- uniform sample C of k nodes
- Ran Dijkstra from each $u \in C$ (Gives us exact $B(u)$ for $u \in C$)
- For $v \in V \setminus C$ estimate $B(v)$ by the average distance to sampled nodes

$$\hat{B}(v) = \frac{\sum_{u \in C} d_{uv}}{k}$$
$B(v)$?
Sampling Estimator $\hat{B}(\nu)$
Sampling: Properties

- Unbiased
- Can have large variance -- uniform sample can miss heavy (far) items. Estimate quality depends on distribution of distances from \(\nu \)

Works! sample average concentrated population average

maximum = \(O(\text{median}) \)
Sampling: Properties

- Unbiased
- Can have large variance -- uniform sample can miss heavy (far) items. Estimate quality depends on distribution of distances from ν.

Heavy tail -- sample average has high variance – relative error.
Approach II: Pivoting

- uniform sample C of k nodes
- Ran Dijkstra from each $u \in C$ (Gives us exact $B(u)$ for $u \in C$)
- For $v \in V \setminus C$, find closest sample node "pivot" $c(v) \in C$.
- Estimate using pivot average distance

$$\hat{B}(v) = B(c(v))$$
Pivoting

\[B(u_1) \]
Pivoting

\[B(u_2) \]

\[B(u_1) \]
Pivoting

\[B(u_1) \]

\[B(u_2) \]

\[B(u_3) \]

\[B(u_k) \]

\[B(u_4) \]
Pivoting $\hat{B}(\nu)$

Inherit centrality of pivot (closest sampled node)
Pivoting: properties

Estimate is within $\pm d_{vc}(v)$ of true $B(v)$

Proof:

- triangle inequality: for all z,
 \[d_{c(v)z} - d_{vc(v)} \leq d_{vz} \leq d_{c(v)z} + d_{vc(v)} \]
- Therefore $|B(v) - B(c(v))| \leq d_{vc(v)}$
Pivoting: properties

- Estimate is within $\pm d_{vc(v)}$ of true $B(v)$

- WHP upper bound $\hat{B}(v) \equiv d_{vc(v)} + B(c(v))$ satisfies

 $$B(v) \leq \hat{B}(v) \leq 4B(v)$$

Proof: WHP pivot is one of the $\frac{n}{k} \log n$ closest nodes

$$\Rightarrow B(v) \geq \left(1 - \frac{\log n}{k}\right) d_{vc(v)}$$

$$\hat{B}(v) = d_{vc(v)} + B(c(v)) \leq 2d_{vc(v)} + B(v) \quad \text{Triangle inequality}$$

WHP $$\leq B(v) \cdot \left(1 + \frac{2}{\log n} \right) \left(1 - \frac{\log n}{k}\right)$$
Pivoting: properties

- Estimate is within $\pm d_{vc(v)}$ of true $B(v)$

- **WHP upper bound** $B(v) = d_{vc(v)} + B(c(v))$ satisfies $B(v) \leq \hat{B}(v) \leq 4B(v)$

Bounded relative error for any instance!
A property we could not obtain with sampling
Pivoting vs. Sampling

- Same computation/information:
 - \(k\) Dijkstras from a uniform sample

- Different properties on estimate quality
 - Sampling accurate when distance distribution is concentrated.
 - Pivoting accurate with heavier tail.

But neither gives us a small relative error!

\[
\hat{B}(v) = \frac{\sum_{u \in C} d_{uv}}{k}
\]

\[
\hat{B}(v) = B(c(v))
\]
Hybrid Estimator !!

- Same computation/information as sampling/pivoting \((k\) Dijkstras from a uniform sample)
- Use sample to estimate distances from \(v\) to “close” nodes
- Use pivot to estimate distances to “far” nodes

How to partition close/far ?

Idea: Look at distances of nodes from the pivot \(c(v)\) (we have all these distances!)
Hybrid

Partition nodes according to their distance to the pivot $c(v)$:

- **Far nodes**: Nodes $> \frac{d_{vc(v)}}{\epsilon}$ from pivot, use distance to pivot.
 - We have error at most $\pm d_{vc(v)}$ which is at most $\frac{1}{(\frac{1}{\epsilon} - 1)} \approx \epsilon$ contribution to relative error

- **Close nodes**: Nodes within $\frac{d_{vc(v)}}{\epsilon}$ from pivot, estimate using exact distances to sampled nodes
 - Intuition: We “cut off” the heavy tail that was bad for sampling
Hybrid $\hat{B}(v)$

Close nodes

Far nodes

$c(v)$

$10x \cdot d_{vc(v)}$
Hybrid $\hat{B}(v)$

Close nodes $c(v)$

6 close nodes (we know how many). Estimate using exact distances from v to the 2 close sampled nodes
Far nodes

11 far nodes (we know which and how many). Estimate using distance from pivot $c(\nu)$
Analysis

How to set sample size k?

Theory: (worse-case distance distribution)

$k \approx \epsilon^{-3}$ for NRMSE ϵ

($\times \log n$) for small error WHP for all nodes
Analysis (worst case)

- **Far nodes**: Nodes $> d_{vc(v)}/\epsilon$ from pivot $\approx \epsilon$ contribution to relative error

- **Close nodes**: We need $k \approx \epsilon^{-3}/2$ samples so that NRMSE (normalized standard error) at most ϵ

Idea: We estimate $\sum\{u \text{ close}\} d_{uv}$ by $\frac{n}{k} \sum\{u \text{ close in } C\} d_{uv}$

- Each $u \in C$ is sampled with $p = k/n \Rightarrow \text{var} \left(\sum\{u \text{ close}\} d_{\{uv\}} \right) \leq \frac{n}{k} \sum\{u \text{ close}\} d_{\{uv\}}^2$

- Look at worst-case values $d_{uv} \in [0, \frac{d_{vc(v)}}{\epsilon}]$ that maximize $\sqrt{\text{var}} / \sum u d_{uv}$
Analysis

How to set sample size k?

Theory: (worse-case distance distribution)

$$k \approx \epsilon^{-3}\times \log n$$

for small error WHP for all nodes

Practice: $k \approx \epsilon^{-2}$ works well.

What about the guarantees (want confidence intervals)?
Adaptive Error Estimation

Idea: We use the information we have on the actual distance distribution to obtain tighter confidence bounds for our estimate than the worst-case bounds.

- **Far nodes:** Instead of using error $\pm d_{vc}(v)$, use sampled far nodes to determine if errors “cancel out.” (some nodes closer to pivot $c(v)$ but some closer to v.

- **Close nodes:** Estimate population variance from samples.
Extension: Adaptive Error Minimization

For a given sample size (computation investment), and a given node, we can consider many thresholds for partitioning into closer/far nodes.

- We can compute an adaptive error estimate for each threshold (based on what we know on distribution).
- Use the estimate with smallest estimated error.
Efficiency

Given the kn distances from sampled nodes to all others, how do we compute the estimates efficiently?

- Partition “threshold” is different for different nodes with the same pivot (since it depends on distance to pivot).
- Can compute “suffix sums” of distances with Dijkstra from each pivot, to compute estimates for all nodes in $O(k)$ time per node.
Scalability:
Using +O(1)/node memory

- We perform k Dijkstra’s but do not want to store all kn distances.
- In our implementation, we reduce the additional storage to $O(1)$ per node by first mapping nodes to their closest pivots. This is equivalent to performing one more Dijkstra.
Experimental Evaluation

| type | instance | $|E| \cdot 10^3$ | Exact time | Sampling err. time | Pivoting err. time | Hybrid err. time |
|-------|----------|----------------|------------|-------------------|-------------------|-----------------|
| road | fla-t | 1344 | 60 | 5.4 24.4 | 3.2 21.6 | 2.5 28.3 |
| | usa-t | 28,854 | 44,222 | 2.9 849.4 | 3.7 736.4 | 2.0 2,344.3 |
| grid | grid20 | 2,095 | 71 | 4.3 26.5 | 3.5 26.8 | 2.9 29.2 |
| triang| buddha-w | 1,631 | 21 | 3.5 16.4 | 2.6 15.5 | 2.2 18.5 |
| | del20-w | 3,146 | 72 | 2.7 27.4 | 3.6 26.7 | 2.6 32.6 |
| game | FrozenSea| 2,882 | 38 | 3.0 22.1 | 4.1 20.2 | 2.1 24.0 |
| sensor| rgg20-w | 6,894 | 160 | 1.6 61.2 | 3.8 57.1 | 2.1 73.3 |
| comp | Skitter | 11,094 | 248 | 0.7 59.7 | 14.3 55.2 | 0.7 61.6 |
| | MetroSec | 21,643 | 270 | 0.6 52.1 | 2.3 47.5 | 0.6 53.2 |
| social| rws20 | 3,146 | 114 | 0.9 45.6 | 3.0 41.3 | 0.9 49.4 |
| | rba20 | 6,291 | 133 | 0.8 56.8 | 9.7 48.4 | 0.8 60.2 |
| | Hollywood| 56,307 | 227 | 1.0 86.5 | 14.6 81.8 | 1.0 85.7 |
| | Orkut | 117,185 | 2,973 | 1.7 377.4 | 7.2 367.6 | 1.7 376.4 |

Hybrid slightly slower, but more accurate than sampling or pivoting
Experimental Evaluation

- Sampling: less accurate for “high diameter” graphs.
- Pivoting: less accurate for “low diameter” graph.
- Hybrid: Consistently good results (best of both).
Example Centrality Distribution

Graph: Road network of Florida with travel time metric.
Example Centrality Distribution

Graph: Road network of Florida with travel time metric.
Example Centrality Distribution

Graph: Road network of Florida with travel time metric.

- **Frequency**
- **Estimated Centrality**

![Bar chart showing frequency of estimated centrality values for the road network of Florida.](image)
Directed graphs

(Classic Closeness) Centrality is defined as (inverse of) average distance to *reachable* (outbound distances) or *reaching* (inbound distances) nodes only.

- Sampling works (same properties) *when graph is strongly connected*.
- Pivoting breaks, even with strong connectivity. Hybrid therefore also breaks.
- When graph is not strongly connected, basic sampling also breaks — we may not have enough samples from each reachability set.

We design a new sampling algorithm...
Directed graphs

(Classic Closeness) Centrality is defined as (inverse of) average distance to *reachable* (outbound distances) or *reaching* (inbound distances) nodes only.

Algorithm computes for each node \(v \) its average distance to a uniform sample of \(k \) nodes from its reachability set. \(\tilde{O}(k|G|) \) based on reachability sketches [C’ 1994].

- Process nodes \(u \) in random permutation order
- Run Dijkstra from \(u \), prune at nodes already visited \(k \) times

\[\hat{B}(v) = \text{sum of distances from visiting nodes} / \#\text{visitors} \]
Directed graphs: Reachability sketch based sampling is orders of magnitude faster with only a small error.

| type | instance | $|V|$ [$\cdot 10^3$] | $|E|$ [$\cdot 10^3$] | time $\approx [h:m]$ | Exact err. [%] | Sampling time [sec] |
|----------|---------------|-------------------|-------------------|---------------------|----------------|---------------------|
| road | eur-t | 18 010 | 42 189 | 28:39:47 | 3.2 | 655.9 |
| web | NotreDame | 326 | 1 470 | 0:54 | 2.4 | 1.5 |
| | Indo | 1 383 | 16 540 | 58:46 | 4.1 | 21.1 |
| | Indochina | 7 415 | 191 607 | 2:88:19 | 4.7 | 174.7 |
| comp | Gnutella | 63 | 148 | 0:02 | 2.8 | 0.6 |
| social | Epinions | 76 | 509 | 0:07 | 5.4 | 1.1 |
| | Slashdot | 82 | 870 | 0:18 | 2.2 | 2.2 |
| | Flickr | 1 861 | 22 614 | 2:27:01 | 4.3 | 65.1 |
| | WikiTalk | 2 394 | 5 021 | 2:20:01 | 0.5 | 5.4 |
| | Twitter | 457 | 14 856 | 2:8:16 | 1.2 | 26.1 |
| | LiveJournal | 4 848 | 68 475 | 27:57:01 | 1.9 | 276.8 |
Extension: Metric Spaces

Basic hybrid estimator applies in any metric space: Using k single-source computations from a random sample, we can estimate centrality of all points with a small relative error.

Application: Centrality with respect to *Round-trip distances in directed strongly connected graphs*:

- Perform both a forward and back Dijkstra from each sampled node.
- Compute roundtrip distances, sort them, and apply estimator to that.
Extension: Node weights

Weighted centrality: Nodes are heterogeneous. Some are more important. Or more related to a topic. Weighted centrality emphasizes more important nodes.

\[
B(ν) = \frac{\sum_{u∈V} w(u)d_{uv}}{\sum_{u∈V} w(u)}
\]

Variant of Hybrid with same strong guarantees uses a weighted (VAROPT) instead of a uniform nodes sample.
Closeness Centrality

- Classic (penalize for far nodes)
 \[C(i) = \frac{n - 1}{\sum_j d_{ij} \beta(j)} \]

- Distance-decay (reward for close nodes)
 \[C(i) = \sum_j \alpha(d_{ij}) \beta(j) \]

Different techniques required: All-Distances Sketches [C’94] work for approximating distance-decay but not classic.
Summary

- Undirected graphs (and metric spaces): We combine sampling and pivoting to estimate classic closeness centrality of all nodes within a small relative error using k single-source computations.
- Directed graphs: Sampling based on reachability sketches
- Implementation: minutes on real-world graphs with hundreds of millions of edges
Future

- Estimate classic closeness centrality of all nodes within a small relative error using fewer single-source computations. Can do $k = \epsilon^{-2} \log n$ with adaptive choice of sources. Can we eliminate the union bound?
- Can we do better in metric spaces (not confined to single source)? Small dimension?
- Adaptive confidence bounds are applicable in many other problems. Should be used broadly.
Thank you!