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Very Large Graphs

= Model relations and interactions (edges)
between entities (nodes)
= Call detail, email exchanges,
= Hyperlinks
= Social Networks (friend, follow, like),
= Commercial transactions,...

" Need for scalable analytics



Centrality

dCentrality of a node measures its importance.
Applications: ranking, scoring, characterize
network properties.

dSeveral structural centrality definitions:

= Betweeness: effectiveness in connecting pairs of
nodes

=" Degree: Activity level
= Eigenvalue: Reputation

biIity to reach/influence others.



Closeness Centrality

Importance measure of a node that is a function
of the distances from a node to all other nodes.

Classic Closeness Centrality [(Bavelas 1950,
Beaucahmp 1965, Sabidussi 1966)]

(Inverse of) the average distance to all other nodes
n—1
ZuEV duv

Maximum centrality node is the I-median

B 1(v) =



Computing Closeness Centrality

JRun Dijkstra’s algorithm from source v.

1 Compute sum of distances ).,y d,, from v to
all other nodes

ZuEV duv
n—1

B(v) =

Il Does not scale when we want B(v) for many or
all nodes in a large graph



Centrality of v using Dijkstra

Exact, but does not scale for many nodes on large graphs.



Goals

(AScalable algorithm to compute/estimate
centrality scores of all nodes

1 Accurate: Small relative error: within (1 + €)
with high probability

IScalable:
3 Processing cost O(|G|) (can depend on e~ 1)

J Constant memory per node, independent of €

Have to settle for approximation: Exact computation,
even of the maximum centrality node (1-median) seems
as hard as APSP [Abboud Vassilevska-Williams 2015]



Algorithmic Overview

JApproach |: Sampling

" Properties: good for “close” distances

JApproach II: Pivoting

" Properties: good for “far” distances
A Hybrid: Best of all worlds



—

{ Estimation\ /Computation\

Approach I: Sampling

EW 2001, OCL2008,Indyk1999,Thorup2001]

J uniform sample C of k nodes

. Ran Dijkstra from each u € C (Gives us exact
B(u) foru € C)

JdFor v € V' \ C estimate B(v) by the average
distance to sampled nodes

s u duv
B(v) = 2 E]i




Sampling




B(v) ?



Sampling Estimator B(v)




Sampling: Properties

_J1Unbiased

J1Can have large variance -- uniform sample can miss
heavy (far) items. Estimate quality depends on
distribution of distances from v

A

maximum = O(median)

Works! sample average concentrated population average




Sampling: Properties

_J1Unbiased

J1Can have large variance -- uniform sample can miss
heavy (far) items. Estimate quality depends on
distribution of distances from v

A

—v

Heavy tail -- sample average has high variance — relative error



Approach II: Pivoting

Jduniform sample C of k nodes

A

omputation\

. Ran Dijkstra from each u € C (Gives us exact
B(u) foru € C)

dForv € V \ C, find closest sample node
“pivot” c(v) € C .

Jestimate using pivot average distance

{ Estimation YC

B(v) = B(c(v))



Pivoting




Pivoting
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Pivoting



Pivoting B (v)
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Inherit centrality of pivot (closest sampled node)



Pivoting: properties
JEstimate is within td, ) of true B(v)

Proof:

" triangle inequality: for all z,
dc(v)z _ dvc(v) = dvz = dc(v)z + dvc(v)
* Therefore |B(v) — B(c(v))| < dyc)




Pivoting: properties

JEstimate is within td, ) of true B(v)

QWHP upper bound B(v) = dycv) T B (c(v))
satisfies
B(v) < B(v) < 4B(v)

Proof: WHP pivot is one of the %log n closest nodes

= B(v) > (1—

logn

I )dvc(v)
B(v) — dvc(v) + B(C(v)) = Zdvc(v) + B(v)

2
WHP <B(w)-(1 -I-( hﬂ))

k

Triangle inequality




Pivoting: properties

JEstimate is within td, ) of true B(v)

JAWHP upper bound B(v) = dy.,y + Blc(v))
satisfies

B(v) < B(v) < 4B(v)

1)

Bounded relative error for any instance !
A property we could not obtain with sampling



Pivoting vs. Sampling

JSame computation/information:
= k Dijkstras from a uniform sample

] Different properties on estimate quality

= Sampling accurate when distance distribution is
concentrated.

= Pijvoting accurate with heavier tail.

But neither gives us a small relative error !

B(v) = 22 B() = B(c())




Hybrid Estimator !!

= Same computation/information as
sampling/pivoting (k Dijkstras from a uniform
sample)

= Use sample to estimate distances from v to “close”
nodes

" Use pivot to estimate distances to “far” nodes

How to partition close/far ?

ldea: Look at distances of nodes from the pivot
c(v) (we have all these distances!)



Hybrid
Partition nodes according to their distance to the
pivot c(v):

" Far nodes: Nodes > dy (/€ from pivot, use
distance to pivot.

" We have error at most  *d () which is at most

1 N .
1/(=—1) = € contribution to relative error
€

" Close nodes: Nodes within dy (/€ from pivot,
estimate using exact distances to sampled nodes

" |ntuition: We “cut off” the heavy tail that was bad for
sampling




Far nodes




Close nodes

c(v)

6 close nodes (we know how many). Estimate using
exact distances from v to the 2 close sampled nodes



Far nodes

11 far nodes (we know which and how many). Estimate
using distance from pivot c(v)



Analysis
How to set sample size k ?

Theory: (worse-case distance distribution)
k ~ €3 for NRMSE €

(X logn) for small error WHP for all nodes



Analysis (worst case)

Far nodes: Nodes > dy,.(,)/€ from pivot~ €
contribution to relative error

Close nodes: We need k =~ €73 /2 samples so that
NRMSE (normalized standard error) at most €

. n
[dea: We estimate X, cio5e} Guv bY - 2 crose in ¢} Quw

» Eachu € Cissampled withp = k/n=

_— n
var (Z{u close} d{uV}) = K Z{u close} d{ZUV}

d
= Look at worst-case values d, € [0,222] that

€
maximize \var/ )., dy



Analysis
How to set sample size k ?

Theory: (worse-case distance distribution)
k ~¢e 3

(X logn) for small error WHP for all nodes
—2

Practice: k = €% works well.

What about the guarantees (want confidence
intervals) ?



Adaptive Error Estimation

ldea: We use the information we have on the
actual distance distribution to obtain tighter
confidence bounds for our estimate than the

worst-case bounds.

= Far nodes: Instead of using error +d,(;), use
sampled far nodes to determine if errors “cancel
out.” (some nodes closer to pivot c(v) but some

closer to v.

" Close nodes: Estimate population variance
from samples.




Extension:
Adaptive Error Minimization

For a given sample size (computation
investment), and a given node, we can consider
many thresholds for partitioning into closer/far
nodes.

= We can compute an adaptive error estimate
for each threshold (based on what we know
on distribution).

= Use the estimate with smallest estimated
error.



Efficiency
Given the kn distances from sampled nodes to all
others, how do we compute the estimates
efficiently?

= Partition “threshold” is different for different
nodes with the same pivot (since it depends
on distance to pivot).

= Can compute “suffix sums” of distances with
Dijkstra from each pivot, to compute
estimates for all nodes in O (k) time per node



Scalability:
Using +O(1)/node memory

= We perform k Dijkstra’s but do not want to
store all kn distances.

" |n our implementation, we reduce the
additional storage to O(1) per node by first
mapping nodes to their closest pivots. This is
equivalent to performing one more Dijkstra.



Experimental Evaluation

Exact Sampling Pivoting Hybrid

|E]| time  err. time err. time  err. time

type instance [(103] = [hrs] [%] [sec] [%]  [sec] [%] [sec]
road fla-t 1344 60 5.4 24 .4 3.2 21.6 2.5 28.3
usa-t 28854 44222 29 8494 3.7 7364 2.0 23443

grid grid20 2095 71 4.3 26.5 3.5 268 2.9 29.2
triang  buddha-w 1631 21 35 16.4 2.6 155 2.2 18.5
del20-w 3146 72 27 27.4 3.6 26.7 2.6 32.6

game FrozenSea 2882 38 3.0 22.1 4.1 202 2.1 24.0
sensor  rgg20-w 6 894 160 1.6 61.2 3.8 57.1 21 73.3
comp  Skitter 11004 248 0.7 59.7 143 55.2 0.7 61.6
MetroSec 21643 270 0.6 2.1 2.3 475 0.6 53.2

social rws20 3146 114 0.9 45.6 3.0 41.3 0.9 49.4
rba20 6291 133 0.8 56.8 9.7 48.4 0.8 60.2
Hollywood 56 307 227 1.0 865 146 81.8 1.0 85.7

Orkut 117 185 2973 1.7 3774 7.2 3676 1.7 376.4

Hybrid slightly slower, but more accurate than
sampling or pivoting



Experimental Evaluation
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e Sampling: less accurate for “high diameter” graphs.
e Pivoting: less accurate for “low diameter” graph.
e Hybrid: Consistently good results (best of both).



W

Graph: Road network of Florida with travel time metric.
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Graph: Road network of Florida with travel time metric.
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Graph: Road network of Florida with travel time metric.
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Directed graphs

(Classic Closeness) Centrality is defined as (inverse of)
average distance to reachable (outbound distances) or
reaching (inbound distances) nodes only.

Sampling works (same properties) when graph is
strongly connected.

Pivoting breaks, even with strong connectivity.
Hybrid therefore also breaks.

When graph is not strongly connected, basic
sampling also breaks —we may not have enough
samples from each reachability set

We desigh a new sampling algorithm...



...Directed graphs

(Classic Closeness) Centrality is defined as (inverse of)
average distance to reachable (outbound distances) or
reaching (inbound distances) nodes only.

Algorithm computes for each node v its average distance
to a uniform sample of k nodes from its reachability set.
O(k|G|) based on reachability sketches [C’ 1994].

" Process nodes uin random permutation order
= Run Dijkstra from u, prune at nodes already visited k times

B(v) = sum of distances from visiting nodes / #visitors



Experimental Evaluation

Exact Sampling

|V |E| time err. time

type  instance [-10°] [-10%] ~[h:m] [%] [sec]
road eur-t 18010 42189 28399:47 3.2 655.9
web NotreDame 326 1470 0:54 24 1.5
Indo 1383 16 540 h8:46 4.1 21.1
Indochina 7415 191607 2884:19 47 1747

comp  Gnutella 63 148 0:02 2.8 0.6
social Epinions 76 509 0:07 5.4 1.1
Slashdot 82 870 0:18 2.2 2.2

Flickr 1861 22614 227:01 4.3 65.1
WikiTalk 2304 5021 22:01 0.5 5.4

Twitter 457 14 856 28:16 1.2 26.1

LiveJournal 4 848 68 475 276701 1.9 276.8

Directed graphs: Reachability sketch based sampling
_is orders of magnitude faster with only a small error.



Extension: Metric Spaces

Basic hybrid estimator applies in any metric space:
Using k single-source computations from a
random sample, we can estimate centrality of all
points with a small relative error.

Application: Centrality with respect to Round-trip
distances in directed strongly connected graphs:

= Perform both a forward and back Dijkstra from each
sampled node.

= Compute roundtrip distances, sort them, and apply
estimator to that.



Extension: Node weights

Weighted centrality: Nodes are heterogeneous.
Some are more important. Or more related to a

topic. Weighted centrality emphasizes more
important nodes.

2uey W(u)dy,
ZuEV W(u)

Variant of Hybrid with same strong guarantees

uses a weighted (VAROPT) instead of a uniform
nodes sample.

B(v) =




Closeness Centrality

" Classic (penalize for far nodes)

Ci) = m—1)/ ) dyBG)
J

= Distance-decay (reward for close nodes)

C) = ) aldy) BG)

Different techniques reqmjred: All-Distances Sketches [C’
94] work for approximating distance-decay but not classic.



Summary

* Undirected graphs (and metric spaces): We
combine sampling and pivoting to estimate
classic closeness centrality of all nodes within
a small relative error using k single-source
computations.

» Directed graphs: Sampling based on
reachability sketches

" Implementation: minutes on real-world
graphs with hundreds of millions of edges



Future

" Estimate classic closeness centrality of all nodes
within a small relative error using fewer single-
source computations. Cando k = e “logn
with adaptive choice of sources. Can we
eliminate the union bound ?

" Can we do better in metric spaces (not confined
to single source) ? Small dimension?

" Adaptive confidence bounds are applicable in
many other problems. Should be used broadly.



Thank you!



