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Very Large Graphs 

 Model relations and interactions (edges) 
between entities (nodes) 

 Call detail, email exchanges,   

 Hyperlinks  

 Social Networks (friend, follow, like),  

 Commercial transactions,… 

 Need for scalable analytics 



Centrality 
Centrality of a node measures its importance.  

Applications:  ranking, scoring, characterize 
network properties. 

Several structural centrality definitions: 

 Betweeness:  effectiveness in connecting pairs of  
nodes 

 Degree:  Activity level 

 Eigenvalue:  Reputation 

 Closeness:  Ability to reach/influence others. 

 



Closeness Centrality 

Classic Closeness Centrality [(Bavelas 1950, 
Beaucahmp 1965,  Sabidussi 1966)] 

(Inverse of) the average distance to all other nodes 

𝐵−1 𝑣 =
𝑛 − 1

 𝑑𝑢𝑣𝑢∈𝑉

 

Maximum centrality node is the 1-median 

Importance measure of a node that is a function 
of the distances from a node to all other nodes. 



Computing Closeness Centrality 

Run Dijkstra’s algorithm from source 𝑣. 

 Compute sum of distances  𝑑𝑢𝑣𝑢∈𝑉  from 𝑣 to 
all other nodes 

𝐵 𝑣 =
 𝑑𝑢𝑣𝑢∈𝑉

𝑛 − 1
 

!! Does not scale when we want  𝐵 𝑣  for many or 
all nodes in a large graph 



Centrality of 𝑣 using Dijkstra 

𝑣 

Exact, but does not scale for many nodes on large graphs. 



Goals 

Scalable algorithm to compute/estimate 
centrality scores of all nodes 

 Accurate: Small relative error: within 1 + 𝜖  
with high probability 

Scalable: 

 Processing cost  𝑂( 𝐺 ) (can depend on 𝜖−1 ) 

 Constant memory per node, independent of 𝜖  

Have to settle for approximation: Exact computation, 
even of the maximum centrality node (1-median) seems 
as hard as APSP [Abboud Vassilevska-Williams 2015] 



Algorithmic Overview 

Approach I: Sampling 

 Properties: good for “close” distances 

Approach II: Pivoting 

 Properties: good for “far” distances 

Hybrid:  Best of all worlds 



Approach I:  Sampling 

 uniform sample 𝐶 of  𝑘 nodes 

 Ran Dijkstra from each 𝑢 ∈ 𝐶  (Gives us exact 
𝐵(𝑢) for 𝑢 ∈ 𝐶) 

For 𝑣 ∈ 𝑉 ∖ 𝐶 estimate 𝐵(𝑣) by the average 
distance to sampled nodes 

 

𝐵 𝑣 =
 𝑑𝑢𝑣𝑢∈𝐶

𝑘
 

 [EW 2001, OCL2008,Indyk1999,Thorup2001] 
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Sampling 



𝐵(𝑣)  ? 

𝑣 



Sampling Estimator  𝐵 (𝑣)  

𝑣 



Sampling: Properties 

Unbiased 

Can have large variance  -- uniform sample can miss  
heavy (far)  items.   Estimate quality depends on 
distribution of distances from 𝒗 

 

Works!  sample average concentrated population average 

𝒅𝒗𝒖 

maximum = O(median) 



Sampling: Properties 

Heavy tail --   sample average has high variance – relative error 

𝒅𝒗𝒖 

Unbiased 

Can have large variance  -- uniform sample can miss  
heavy (far)  items.   Estimate quality depends on 
distribution of distances from 𝒗 

 



Approach II: Pivoting 

uniform sample 𝐶 of  𝑘 nodes 

 Ran Dijkstra from each 𝑢 ∈ 𝐶  (Gives us exact 
𝐵(𝑢) for 𝑢 ∈ 𝐶) 

For 𝑣 ∈ 𝑉 ∖ 𝐶 , find closest sample node 
“pivot” 𝑐 𝑣 ∈ 𝐶 . 

estimate using  pivot average distance 

 

𝐵 𝑣 = 𝐵(𝑐 𝑣 ) 
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Pivoting 

𝐵(𝑢1) 



Pivoting 

𝐵(𝑢1) 

𝐵(𝑢2) 



Pivoting 

𝐵(𝑢1) 

𝐵(𝑢2) 

𝐵(𝑢3) 

𝐵(𝑢4) 

𝐵(𝑢𝑘) 



Pivoting 𝐵 (𝑣)  

𝐵(𝑢1) 

𝐵(𝑢2) 

𝐵(𝑢3) 

𝐵(𝑢4) 

𝐵(𝑢𝑘) 

𝑣 

Inherit centrality of pivot (closest sampled node) 



Pivoting: properties 

Estimate is within ±𝑑𝑣𝑐 𝑣  of true 𝐵(𝑣)   

Proof: 

 triangle inequality: for all 𝑧,  
𝑑𝑐 𝑣 𝑧 − 𝑑𝑣𝑐 𝑣 ≤ 𝑑𝑣𝑧 ≤ 𝑑𝑐 𝑣 𝑧 + 𝑑𝑣𝑐 𝑣  

 Therefore 𝐵 𝑣 − 𝐵 𝑐 𝑣 ≤ 𝑑𝑣𝑐 𝑣  

𝑐(𝑣) 

𝑣 

𝑧 



Pivoting: properties 

𝐵 𝑣 = 𝑑𝑣𝑐 𝑣 + 𝐵(𝑐 𝑣 ) ≤ 2𝑑𝑣𝑐 𝑣 + 𝐵 𝑣  

≤ 𝐵 𝑣 ⋅ (1 +
2

1 −

log 𝑛

𝑘

) 

Estimate is within ±𝑑𝑣𝑐 𝑣  of true 𝐵(𝑣)   

Proof: WHP pivot is one of the 
𝑛

𝑘
log 𝑛 closest nodes 

⇒   𝐵 𝑣 ≥ 1 −
log 𝑛

𝑘
𝑑𝑣𝑐(𝑣)  

WHP 

WHP upper bound  𝐵 𝑣 ≡ 𝑑𝑣𝑐 𝑣 + 𝐵 𝑐 𝑣   
satisfies 

𝐵 𝑣 ≤ 𝐵 𝑣 ≤ 4𝐵 𝑣  

Triangle inequality 



Pivoting: properties 

Bounded relative error for any instance !   
A property we could  not obtain with sampling 

WHP upper bound  𝐵 𝑣 = 𝑑𝑣𝑐 𝑣 + 𝐵 𝑐 𝑣   
satisfies 

𝐵 𝑣 ≤ 𝐵 𝑣 ≤ 4𝐵 𝑣  

Estimate is within ±𝑑𝑣𝑐 𝑣  of true 𝐵(𝑣)   



Pivoting vs. Sampling 
Same computation/information:  
 𝑘 Dijkstras from a uniform sample 

 Different properties on estimate quality 
 Sampling accurate when distance distribution is 

concentrated.   
 Pivoting accurate with heavier tail.  

𝐵 𝑣 = 𝐵(𝑐 𝑣 ) 𝐵 𝑣 =
 𝑑𝑢𝑣𝑢∈𝐶

𝑘
 

But neither gives us a small relative error ! 



Hybrid Estimator !! 
 Same computation/information as 

sampling/pivoting  (𝑘 Dijkstras from a uniform 
sample) 

  Use sample to estimate distances from 𝑣 to  “close” 
nodes  

  Use pivot to estimate distances to  “far” nodes 

Idea:  Look at distances of nodes from the pivot 
𝑐(𝑣)  (we have all these distances!) 

        How to partition close/far ?   



Hybrid  

 Far nodes: Nodes  > 𝑑𝑣𝑐(𝑣)/𝜖 from pivot, use 

distance to pivot.   

 We have error at most   ±𝑑𝑣𝑐(𝑣) which is at most 

1/(
1

𝜖
− 1) ≈ 𝜖  contribution to relative error 

 

 Partition nodes according to their distance to the 
pivot 𝑐 𝑣 : 

 Close nodes: Nodes within 𝑑𝑣𝑐(𝑣)/𝜖 from pivot, 
estimate using exact distances to sampled nodes 
 Intuition: We “cut off” the heavy tail that was bad for 

sampling 



Hybrid  𝐵 (𝑣)  

𝑣 

Close nodes 

Far nodes 

𝑐(𝑣) 
10x 𝑑𝑣𝑐(𝑣) 



Hybrid  𝐵 (𝑣)  

𝑣 

6  close nodes (we know how many).  Estimate using 
exact distances from 𝑣 to the 2 close sampled nodes 

𝑐(𝑣) 

Close nodes 



Hybrid  𝐵 (𝑣)  

𝑣 

11  far nodes (we know which and how many).  Estimate 
using distance from pivot c(𝑣)  

𝑐(𝑣) 

Far nodes 



Analysis 
How to set sample size 𝑘 ? 

Theory:  (worse-case distance distribution) 
𝑘 ≈ 𝜖−3  for NRMSE 𝜖 
  
 (×  log 𝑛) for small error WHP for all nodes 



Analysis (worst case)  

Far nodes: Nodes  > 𝑑𝑣𝑐(𝑣)/𝜖 from pivot≈ 𝜖  

contribution to relative error 

 Close nodes: We need 𝑘 ≈ 𝜖−3/2  samples so that 
NRMSE (normalized standard error) at most 𝜖  

Idea: We estimate  𝑑𝑢𝑣𝑢 𝑐𝑙𝑜𝑠𝑒   by  
n

k
 𝑑𝑢𝑣𝑢 𝑐𝑙𝑜𝑠𝑒 𝑖𝑛 𝐶  

  Each 𝑢 ∈ 𝐶 is sampled with 𝑝 = 𝑘/𝑛 ⇒ 

𝑣𝑎𝑟  𝑑 𝑢𝑣𝑢 𝑐𝑙𝑜𝑠𝑒
 ≤

𝑛

𝑘
 𝑑 𝑢𝑣

2
𝑢 𝑐𝑙𝑜𝑠𝑒  

 Look at worst-case values 𝑑𝑢𝑣 ∈ [0,
𝑑𝑣𝑐 𝑣

𝜖
]  that 

maximize 𝑣𝑎𝑟/ 𝑑𝑢𝑣𝑢  



Analysis 
How to set sample size 𝑘 ? 

Practice: 𝑘 ≈ 𝜖−2  works well. 

What about the guarantees (want confidence 
intervals) ? 

Theory:  (worse-case distance distribution) 
𝑘 ≈ 𝜖−3   
 (×  log 𝑛) for small error WHP for all nodes 



Adaptive Error Estimation 
Idea:  We use the information we have on the 
actual distance distribution to obtain tighter 
confidence bounds for our estimate than the 
worst-case bounds. 

 Far nodes:  Instead of using error ±𝑑𝑣𝑐 𝑣 , use 
sampled far nodes to determine if errors “cancel 
out.” (some nodes closer to pivot 𝑐(𝑣) but some 
closer to 𝑣. 

 Close nodes: Estimate population variance 
from samples. 



Extension:  
Adaptive Error Minimization 

For a given sample size (computation 
investment), and a given node, we can consider 
many thresholds for partitioning into closer/far 
nodes. 

 We can compute an adaptive error estimate 
for each threshold (based on what we know 
on distribution). 

 Use the estimate with smallest estimated 
error. 



Efficiency 

 Partition “threshold” is different for different 
nodes with the same pivot (since it depends 
on distance to pivot). 

 Can compute “suffix sums” of distances with 
Dijkstra from each pivot, to compute 
estimates for all nodes in 𝑂(𝑘) time per node 

Given the 𝑘𝑛 distances from sampled nodes to all 
others, how do we  compute the estimates 
efficiently? 



Scalability:  
Using +O(1)/node memory 

 We perform 𝑘 Dijkstra’s but do not want to 
store all 𝑘𝑛 distances. 

 In our implementation, we reduce the 
additional storage to O(1) per node by first 
mapping nodes to their closest pivots. This is 
equivalent to performing one more Dijkstra. 



Hybrid slightly slower, but more accurate than 
sampling or pivoting 











Directed graphs 

 Sampling works (same properties) when graph is 
strongly connected. 

 Pivoting breaks,  even with strong connectivity. 
Hybrid therefore also breaks. 

 When graph is not strongly connected, basic 
sampling also breaks  – we may not have enough 
samples from each reachability set 

(Classic Closeness) Centrality is defined as (inverse of) 
average distance to  reachable (outbound distances) or 
reaching (inbound distances) nodes only.  

We design a new sampling algorithm…  



…Directed graphs 

Algorithm computes for each node 𝑣 its average distance 
to a uniform sample of 𝑘 nodes from its reachability set.  
𝑂 (𝑘|𝐺|)  based on reachability sketches  [C’ 1994]. 

(Classic Closeness) Centrality is defined as (inverse of) 
average distance to  reachable (outbound distances) or 
reaching (inbound distances) nodes only.  

 Process nodes  u in random permutation order 
 Run Dijkstra from u, prune at nodes already visited k times 

𝐵 𝑣 =  sum of distances from visiting nodes / #visitors 



Directed graphs: Reachability sketch based sampling 
is orders of magnitude faster with only a small error.  



Extension: Metric Spaces 
Basic hybrid estimator applies in any metric space: 
Using  𝑘 single-source computations from a 
random sample, we can estimate centrality of all 
points with a small relative error.  

 Perform both a forward and back Dijkstra from each 
sampled node.   

 Compute roundtrip distances, sort them, and apply 
estimator to that.  

Application: Centrality with respect to Round-trip 
distances in directed strongly connected graphs:  



Extension: Node weights 
Weighted centrality:  Nodes are heterogeneous. 
Some are more important.  Or more related to a 
topic.  Weighted centrality emphasizes  more 
important nodes. 

𝐵 𝑣 =
 𝑤 𝑢 𝑑𝑢𝑣𝑢∈𝑉

 𝑤(𝑢)𝑢∈𝑉

 

Variant of Hybrid with same strong guarantees 
uses a weighted (VAROPT) instead of a uniform 
nodes sample. 



Closeness Centrality 

 Classic (penalize for far nodes) 

 Distance-decay (reward for close nodes) 

𝑪 𝒊 =  𝜶(𝒅𝒊𝒋) 𝜷(𝒋)

𝒋

 

𝑪 𝒊 = (𝒏 − 𝟏)/ 𝒅𝒊𝒋 𝜷(𝒋)

𝒋

 

Different techniques required:  All-Distances Sketches [C’ 
94] work for approximating distance-decay but not  classic. 



Summary 

 Undirected graphs (and metric spaces): We 
combine sampling and pivoting to estimate 
classic closeness centrality of all nodes within 
a small relative error using 𝑘 single-source 
computations. 

 Directed graphs: Sampling based on 
reachability sketches 

 Implementation: minutes on real-world 
graphs with hundreds of millions of edges 

 



Future 

 Estimate classic closeness centrality of all nodes 
within a small relative error using fewer single-
source computations. Can do   𝑘 = 𝜖−2 log 𝑛 
with adaptive choice of sources.  Can we 
eliminate the union bound ? 

 Can we do better in metric spaces (not confined 
to single source) ? Small dimension? 

 Adaptive confidence bounds are applicable  in 
many other problems.  Should be used broadly.  



Thank you! 


