# Computing Classic Closeness Centrality, at Scale

#### **Edith Cohen**

Joint with: Thomas Pajor, Daniel Delling, Renato Werneck

# Very Large Graphs

- Model relations and interactions (edges) between entities (nodes)
  - Call detail, email exchanges,
  - Hyperlinks
  - Social Networks (friend, follow, like),
  - Commercial transactions,...
- Need for scalable analytics

# Centrality

Centrality of a node measures its importance.
 Applications: ranking, scoring, characterize
 network properties.

□Several structural centrality definitions:

- Betweeness: effectiveness in connecting pairs of nodes
- Degree: Activity level
- Eigenvalue: Reputation

**Closeness:** Ability to reach/influence others.

#### **Closeness Centrality**

Importance measure of a node that is a function of the distances from a node to all other nodes.

Classic Closeness Centrality [(Bavelas 1950, Beaucahmp 1965, Sabidussi 1966)] (Inverse of) the average distance to all other nodes

$$B^{-1}(v) = \frac{n-1}{\sum_{u \in V} d_{uv}}$$

Maximum centrality node is the 1-median

#### **Computing Closeness Centrality**

 $\Box$ Run Dijkstra's algorithm from source v.

**Compute sum of distances**  $\sum_{u \in V} d_{uv}$  from v to all other nodes

$$B(v) = \frac{\sum_{u \in V} d_{uv}}{n-1}$$

!! Does not scale when we want B(v) for many or all nodes in a large graph

#### Centrality of v using Dijkstra



Exact, but does not scale for many nodes on large graphs.

# Goals

□Scalable algorithm to compute/estimate centrality scores of **all** nodes

- □ Accurate: Small relative error: within  $(1 + \epsilon)$  with high probability
- **Scalable**:
  - $\Box$  Processing cost O(|G|) (can depend on  $\epsilon^{-1}$ )
  - $\Box$  Constant memory per node, independent of  $\epsilon$

Have to settle for approximation: Exact computation, even of the maximum centrality node (1-median) seems as hard as APSP [Abboud Vassilevska-Williams 2015]

### Algorithmic Overview

- Approach I: Sampling
  - Properties: good for "close" distances
- Approach II: *Pivoting* 
  - Properties: good for "far" distances
- **Hybrid:** Best of all worlds

# **Approach I:** Sampling [EW 2001, OCL2008, Indyk1999, Thorup2001] uniform sample C of k nodes Ran Dijkstra from each $u \in C$ (Gives us exact B(u) for $u \in C$ ) **□**For $v \in V \setminus C$ estimate B(v) by the average Estimation distance to *sampled* nodes

$$\widehat{B}(v) = \frac{\sum_{u \in C} d_{uv}}{k}$$

# Sampling







# Sampling: Properties

Unbiased

Can have large variance -- uniform sample can miss heavy (far) items. Estimate quality depends on distribution of distances from v



Works! sample average concentrated population average

# Sampling: Properties

- Unbiased
- Can have large variance -- uniform sample can miss heavy (far) items. Estimate quality depends on distribution of distances from v



Heavy tail -- sample average has high variance - relative error

#### **Approach II: Pivoting**

 $\underline{\mathfrak{S}}$  uniform sample *C* of *k* nodes

Ran Dijkstra from each  $u \in C$  (Gives us exact B(u) for  $u \in C$ )

For  $v \in V \setminus C$ , find closest sample node "pivot"  $c(v) \in C$ . estimate using pivot average distance

$$\widehat{B}(v) = B(c(v))$$









#### **Pivoting: properties**

Estimate is within  $\pm d_{vc(v)}$  of true B(v)

Proof:

triangle inequality: for all z,  $d_{c(v)z} - d_{vc(v)} \leq d_{vz} \leq d_{c(v)z} + d_{vc(v)}$ Therefore  $|B(v) - B(c(v))| \leq d_{vc(v)}$ 



#### **Pivoting: properties**

Estimate is within  $\pm d_{vc(v)}$  of true B(v)

**WHP upper bound**  $\hat{B}(v) \equiv d_{vc(v)} + B(c(v))$ satisfies

$$B(v) \le \widehat{B}(v) \le 4B(v)$$

Proof: WHP pivot is one of the  $\frac{n}{k}\log n$  closest nodes  $\Rightarrow B(v) \ge \left(1 - \frac{\log n}{k}\right) d_{vc(v)}$   $\widehat{B}(v) = d_{vc(v)} + B(c(v)) \le 2d_{vc(v)} + B(v)$ Triangle inequality WHP  $\le B(v) \cdot \left(1 + \frac{2}{\left(1 - \frac{\log n}{v}\right)}\right)$ 

#### **Pivoting: properties**

Estimate is within  $\pm d_{vc(v)}$  of true B(v)

**WHP upper bound**  $B(v) = d_{vc(v)} + B(c(v))$ satisfies

$$B(v) \le \widehat{B}(v) \le 4B(v)$$

Bounded relative error for any instance ! A property we could not obtain with sampling

# **Pivoting vs. Sampling**

- □Same computation/information:
  - k Dijkstras from a uniform sample
- Different properties on estimate quality
  - Sampling accurate when distance distribution is concentrated.
  - Pivoting accurate with heavier tail.

But neither gives us a small relative error !

$$\widehat{B}(v) = \frac{\sum_{u \in C} d_{uv}}{k}$$

$$\widehat{B}(v) = B(c(v))$$

# Hybrid Estimator !!

- Same computation/information as sampling/pivoting (k Dijkstras from a uniform sample)
- Use sample to estimate distances from v to "close" nodes
- Use pivot to estimate distances to "far" nodes

How to partition close/far ?

Idea: Look at distances of nodes from the pivot c(v) (we have all these distances!)

# Hybrid

Partition nodes according to their distance to the pivot c(v):

- Far nodes: Nodes  $> d_{vc(v)}/\epsilon$  from pivot, use distance to pivot.
  - We have error at most  $\pm d_{vc(v)}$  which is at most  $1/(\frac{1}{\epsilon}-1) \approx \epsilon$  contribution to relative error
- <u>Close nodes</u>: Nodes within  $d_{vc(v)}/\epsilon$  from pivot, estimate using exact distances to *sampled* nodes
  - Intuition: We "cut off" the heavy tail that was bad for sampling





exact distances from v to the 2 close sampled nodes



# Analysis

How to set sample size k ?

<u>Theory</u>: (worse-case distance distribution)  $k \approx \epsilon^{-3}$  for NRMSE  $\epsilon$ 

 $(\times \log n)$  for small error WHP for all nodes

#### Analysis (worst case)

□<u>Far nodes</u>: Nodes >  $d_{vc(v)}/\epsilon$  from pivot≈  $\epsilon$ contribution to relative error

Close nodes: We need  $k \approx \epsilon^{-3}/2$  samples so that NRMSE (normalized standard error) at most  $\epsilon$ 

<u>Idea</u>: We estimate  $\sum_{\{u \ close\}} d_{uv}$  by  $\frac{1}{k} \sum_{\{u \ close \ in \ C\}} d_{uv}$ 

- Each  $u \in C$  is sampled with  $p = k/n \Rightarrow$  $var(\sum_{\{u \ close\}} d_{\{uv\}}) \leq \frac{n}{k} \sum_{\{u \ close\}} d_{\{uv\}}^2$
- Look at worst-case values  $d_{uv} \in [0, \frac{a_{vc(v)}}{\epsilon}]$  that maximize  $\sqrt{var} / \sum_u d_{uv}$

# Analysis

How to set sample size k ?

<u>Theory</u>: (worse-case distance distribution)  $k \approx \epsilon^{-3}$ 

(× log n) for small error WHP for all nodes <u>Practice</u>:  $k \approx \epsilon^{-2}$  works well.

What about the guarantees (want confidence intervals) ?

### Adaptive Error Estimation

<u>Idea:</u> We use the information we have on the *actua*l distance distribution to obtain tighter confidence bounds for our estimate than the worst-case bounds.

- Far nodes: Instead of using error  $\pm d_{vc(v)}$ , use sampled far nodes to determine if errors "cancel out." (some nodes closer to pivot c(v) but some closer to v.
- <u>Close nodes</u>: Estimate population variance from samples.

#### Extension: Adaptive Error Minimization

For a given sample size (computation investment), and a given node, we can consider many thresholds for partitioning into closer/far nodes.

- We can compute an adaptive error estimate for each threshold (based on what we know on distribution).
- Use the estimate with smallest estimated error.

# Efficiency

Given the *kn* distances from sampled nodes to all others, how do we compute the estimates efficiently?

- Partition "threshold" is different for different nodes with the same pivot (since it depends on distance to pivot).
- Can compute "suffix sums" of distances with Dijkstra from each pivot, to compute estimates for all nodes in O(k) time per node

# Scalability: Using +O(1)/node memory

- We perform k Dijkstra's but do not want to store all kn distances.
- In our implementation, we reduce the additional storage to O(1) per node by first mapping nodes to their closest pivots. This is equivalent to performing one more Dijkstra.

#### **Experimental Evaluation**

|        |                |                           | Exact                | Sampling    |               | Pivoting    |               | Hybrid      |                 |
|--------|----------------|---------------------------|----------------------|-------------|---------------|-------------|---------------|-------------|-----------------|
| type   | instance       | E <br>[·10 <sup>3</sup> ] | time $\approx$ [hrs] | err.<br>[%] | time<br>[sec] | err.<br>[%] | time<br>[sec] | err.<br>[%] | time<br>[sec]   |
| road   | fla-t<br>usa-t | 1 344<br>28 854           | 60<br>44 222         | 5.4<br>2.9  | 24.4<br>849.4 | 3.2<br>3.7  | 21.6<br>736.4 | 2.5<br>2.0  | 28.3<br>2 344.3 |
| grid   | grid20         | 2 0 9 5                   | 71                   | 4.3         | 26.5          | 3.5         | 26.8          | 2.9         | 29.2            |
| triang | buddha-w       | 1631                      | 21                   | 3.5         | 16.4          | 2.6         | 15.5          | 2.2         | 18.5            |
|        | del20-w        | 3146                      | 72                   | 2.7         | 27.4          | 3.6         | 26.7          | 2.6         | 32.6            |
| game   | FrozenSea      | 2882                      | 38                   | 3.0         | 22.1          | 4.1         | 20.2          | 2.1         | 24.0            |
| sensor | rgg20-w        | 6894                      | 160                  | 1.6         | 61.2          | 3.8         | 57.1          | 2.1         | 73.3            |
| comp   | Skitter        | 11094                     | 248                  | 0.7         | 59.7          | 14.3        | 55.2          | 0.7         | 61.6            |
|        | MetroSec       | 21 643                    | 270                  | 0.6         | 52.1          | 2.3         | 47.5          | 0.6         | 53.2            |
| social | rws20          | 3146                      | 114                  | 0.9         | 45.6          | 3.0         | 41.3          | 0.9         | 49.4            |
|        | rba20          | 6291                      | 133                  | 0.8         | 56.8          | 9.7         | 48.4          | 0.8         | 60.2            |
|        | Hollywood      | 56 307                    | 227                  | 1.0         | 86.5          | 14.6        | 81.8          | 1.0         | 85.7            |
|        | Orkut          | 117 185                   | 2 973                | 1.7         | 377.4         | 7.2         | 367.6         | 1.7         | 376.4           |

Hybrid slightly slower, but more accurate than sampling or pivoting

### **Experimental Evaluation**



- Sampling: less accurate for "high diameter" graphs.
- Pivoting: less accurate for "low diameter" graph.
- Hybrid: Consistently good results (best of both).

### Example Centrality Distribution

Graph: Road network of Florida with travel time metric.



### Example Centrality Distribution

Graph: Road network of Florida with travel time metric.



### **Example Centrality Distribution**

Graph: Road network of Florida with travel time metric.



# Directed graphs

(Classic Closeness) Centrality is defined as (inverse of) average distance to *reachable* (outbound distances) or *reaching* (inbound distances) nodes only.

- Sampling works (same properties) when graph is strongly connected.
- Pivoting breaks, even with strong connectivity.
  Hybrid therefore also breaks.
- When graph is not strongly connected, basic sampling also breaks – we may not have enough samples from each reachability set

We design a new sampling algorithm...

## ...Directed graphs

(Classic Closeness) Centrality is defined as (inverse of) average distance to *reachable* (outbound distances) or *reaching* (inbound distances) nodes only.

Algorithm computes for each node v its average distance to a uniform sample of k nodes from its reachability set.  $\tilde{O}(k|G|)$  based on reachability sketches [C' 1994].

Process nodes u in random permutation order

Run Dijkstra from u, prune at nodes already visited k times

 $\hat{B}(v) = \text{sum of distances from visiting nodes / #visitors}$ 

#### **Experimental Evaluation**

| type   | instance    |                                   |                                   | Exact                | Sampling    |               |
|--------|-------------|-----------------------------------|-----------------------------------|----------------------|-------------|---------------|
|        |             | <i>V</i>  <br>[·10 <sup>3</sup> ] | <i>E</i>  <br>[·10 <sup>3</sup> ] | time $\approx$ [h:m] | err.<br>[%] | time<br>[sec] |
| road   | eur-t       | 18010                             | 42 189                            | 28 399:47            | 3.2         | 655.9         |
| web    | NotreDame   | 326                               | 1 470                             | 0:54                 | 2.4         | 1.5           |
|        | Indo        | 1 383                             | 16 540                            | 58:46                | 4.1         | 21.1          |
|        | Indochina   | 7 415                             | 191 607                           | 2884:19              | 4.7         | 174.7         |
| comp   | Gnutella    | 63                                | 148                               | 0:02                 | 2.8         | 0.6           |
| social | Epinions    | 76                                | 509                               | 0:07                 | 5.4         | 1.1           |
|        | Slashdot    | 82                                | 870                               | 0:18                 | 2.2         | 2.2           |
|        | Flickr      | 1861                              | 22 614                            | 227:01               | 4.3         | 65.1          |
|        | WikiTalk    | 2 3 9 4                           | 5 0 2 1                           | 22:01                | 0.5         | 5.4           |
|        | Twitter     | 457                               | 14 856                            | 28:16                | 1.2         | 26.1          |
|        | LiveJournal | 4848                              | 68 475                            | 2 757:01             | 1.9         | 276.8         |

Directed graphs: Reachability sketch based sampling is orders of magnitude faster with only a small error.

## **Extension: Metric Spaces**

Basic hybrid estimator applies in *any metric space*: Using *k* single-source computations from a random sample, we can estimate centrality of all points with a small relative error.

<u>Application</u>: Centrality with respect to *Round-trip distances in directed strongly connected graphs*:

- Perform both a forward and back Dijkstra from each sampled node.
- Compute roundtrip distances, sort them, and apply estimator to that.

## Extension: Node weights

<u>Weighted centrality</u>: Nodes are heterogeneous. Some are more important. Or more related to a topic. Weighted centrality emphasizes more important nodes.

$$B(v) = \frac{\sum_{u \in V} w(u) d_{uv}}{\sum_{u \in V} w(u)}$$

Variant of Hybrid with same strong guarantees uses a weighted (VAROPT) instead of a uniform nodes sample.

### **Closeness Centrality**

Classic (penalize for far nodes)

$$C(i) = (n-1) / \sum_{j} d_{ij} \beta(j)$$

Distance-decay (reward for close nodes)

$$\boldsymbol{C}(\boldsymbol{i}) = \sum_{i} \boldsymbol{\alpha}(\boldsymbol{d}_{ij}) \boldsymbol{\beta}(\boldsymbol{j})$$

Different techniques required: All-Distances Sketches [C' 94] work for approximating distance-decay but not classic.

# Summary

- Undirected graphs (and metric spaces): We combine sampling and pivoting to estimate classic closeness centrality of all nodes within a small relative error using k single-source computations.
- Directed graphs: Sampling based on reachability sketches
- Implementation: minutes on real-world graphs with hundreds of millions of edges

## Future

- Estimate classic closeness centrality of all nodes within a small relative error using fewer single-source computations. Can do  $k = e^{-2} \log n$  with adaptive choice of sources. Can we eliminate the union bound ?
- Can we do better in metric spaces (not confined to single source) ? Small dimension?
- Adaptive confidence bounds are applicable in many other problems. Should be used broadly.

Thank you!