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ABSTRACT
Top- � queries are desired aggregation operations on data sets. Ex-
amples of queries on network data include the top 100 source AS’s,
top 100 ports, or top Domain names over IP packets or over IP flow
records. Since the complete dataset is often not available or not
feasible to examine, we are interested in processing top- � queries
from samples.

If all records can be processed, the top- � items can be obtained
by counting the frequency of each item. Even when the full dataset
is observed, however, resources are often insufficient for such count-
ing and techniques were developed to overcome this issue. When
we can observe only a random sample of the records, an orthogonal
complication arises: The top frequencies in the sample are biased
estimates of the actual top- � frequencies. This bias depends on
the distribution and must be accounted for when seeking the actual
value.

We address this by designing and evaluating several schemes that
derive rigorous confidence bounds for top- � estimates. Simulations
on various data sets that include IP flows data, show that schemes
that exploit more of the structure of the sample distribution produce
much tighter confidence intervals with an order of magnitude fewer
samples than simpler schemes that utilize only the sampled top- �
frequencies. The simpler schemes, however, are more efficient in
terms of computation.

Our work is basic and is widely applicable to all applications
that process top- � and heavy hitters queries over a random sample
of the actual records.

1. INTRODUCTION
Top- � computations are an important data processing tool and

constitute a basic aggregation query. In many applications, it is
not feasible to examine the whole dataset and therefore approxi-
mate query processing is performed using a random sample of the
records [4, 8, 14, 20, 15, 2]. These applications arise when the
dataset is massive or highly distributed [13] such as the case with
IP packet traffic that is both distributed and sampled and with Net-
flow records that are aggregated over sampled packet traces and
collected distributively. Other applications arise when the value of
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the attribute we aggregate over is not readily available and deter-
mining it for a given record has associated (computational or other)
cost. For example, when we aggregate over the domain name that
corresponds to a source or destination IP address, the domain name
is obtained via a reverse DNS lookups which we may want to per-
form on only a sample of the records.

A top- � query over some attribute is to determine the � most
common values for this attribute and their frequencies (number of
occurrences) over a set of records. Examples of such queries are to
determine the top-100 Autonomous Systems destinations, the top-
100 applications (web, p2p, other protocols), 10 most popular Web
sites, or 20 most common domain names. These queries can be
posed in terms of number of IP packets (each packet is considered
a record), number of distinct IP flows (each distinct flow is con-
sidered a record), or other unit of interest. We are interested in
processing top- � queries from a sample of the records. For exam-
ple, from a sampled packet streams or from a sample of the set of
distinct flows. We seek probabilistic or approximate answers that
are provided with confidence intervals.

Top- � queries can be contrasted with proportion queries. A pro-
portion query is to determine the frequency of a specified attribute
value over records in a dataset. Examples of proportion queries are
to estimate the fraction of IP packets or IP flows that belong to p2p
applications, originate from a specific AS, or from a specific Web
site.

Processing an approximate proportion query from a random sam-
ple is a basic and very well understood statistical problem. The
fraction of sampled records with the given attribute value is an un-
biased estimator, and confidence intervals are obtained using stan-
dard methods.

Processing Top- � queries from samples is more challenging. When
the complete data set is observed, we can compute the frequency of
each value and take the top- � most frequent values. When we have
a random sample of the records, the natural estimator is the result
of performing the same action on the sample. That is, obtaining
the � most frequent values in the sample and proportionally scaling
them to estimate the top- � frequency. This estimator, however, is
biased upwards: The expectation of the combined frequency of the
top- � items in the sample is generally larger than the value of this
frequency over the unsampled records. This is a consequence of
the basic statistical property that the expectation of the maximum
of a set of random variables is generally greater (is at least as large)
as the maximum of their expectations. While this bias must be
accounted for when deriving confidence intervals and when evalu-
ating the relation between the sampled and the actual top- � sets, it
is not easy to capture as it depends on the fine structure of the full
distribution of frequencies in the unsampled dataset, which is not
available to us.



Overview of contributions
In Sections 3- 7 we devise and evaluate three basic methods to de-
rive confidence intervals for top- � estimates.� “Naive” bounds Let � be the sampled weight of the sample

top- � frequencies. We consider the distributions with small-
est top- � frequencies that are at least � likely to have a sam-
ple distribution with top- � weight of at least � . We use this
frequency to obtain the lower end of our confidence interval.
The confidence interval constructed can be viewed as a com-
bination of the maximum possible bias of our top- � estimator
on a distribution with the same top- � weight with standard
proportion error bounds. The definition of the Naive bound
requires us to consider all distributions, which is not com-
putationally feasible. To calculate these bounds, we iden-
tify a restricted set of distributions such that it is sufficient to
consider these distributions. We are then able to construct a
pre-computed table that provides the bound according to the
desired confidence level and the value � .� CUB bounds We use the sample distribution to construct a
cumulative upper bound (CUB) for the top- � weight for all���
	 . We then use the CUB to restrict the set of distribu-
tions that must be taken into account in the lower bound con-
struction. Therefore, we can potentially obtain much tighter
bounds than in the Naive approach. The CUB method, how-
ever, is computationally intensive, since we can not use pre-
computed values.� Validation and Cross-validation bounds We borrow termi-
nology from hypothesis testing. The sample is split into two
parts, one is the “learning” part and the other a “testing” part.
The sampled top- � set is obtained from the learning part. We
then look at the sampled weight of that set in the testing sam-
ple to obtain a “lower end” for our confidence interval. We
also consider “validation estimators,” that are biased to be
lower than the top- � weight. These estimators offer an alter-
native to the positively biased estimator that corresponds to
the top- � frequencies in the sample.

We evaluate these methods on a collection of datasets that include
IP traffic flow records collected from a large ISP and Web request
data. We show (precise characterization is provided in the sequel)
that in a sense, the hardest distributions, those with the worst con-
fidence bounds for a given sampled top- � weight, are those where
there are many large items that are close in size. Real-life dis-
tributions, however, are more Zipf-like and therefore the cross-
validation and CUB approaches can significantly outperform the
naive bounds. The naive bounds, however, require the least amount
of computation.

Our methodology and sampling schemes are applicable to the
problem of computing frequent items and heavy hitters from sam-
ples. Iceberg queries [12], frequent items, and heavy hitters, are to
find items that their frequency is above a certain threshold. When
using the sample to find heavy hitters, the likelihood of false posi-
tives depends on the underlying distribution. Our approach can be
used to derive tight confidence intervals.

Relation to previous work
Most previous work addressed applications where the complete
dataset can be observed [19, 7, 5, 18, 16] but resources are not suf-
ficient to compute the exact frequency of each item. The challenge
in this case is to find approximate most frequent items using limited
storage or limited communication. Examples of such settings are a

data stream, data that is distributed on multiple servers, distributed
data streams [1], or data that resides on external memory. We ad-
dress applications where the complete dataset can not be observed
or that it is easier to obtain random samples than to observe the
complete dataset. The challenge is to estimate actual top frequen-
cies from the available sample frequencies. These two settings are
orthogonal. Our techniques and insights can be extended to a com-
bined setting where the application observes a sample of the actual
data and the available storage and communication do not allow us
to obtain exact sample frequencies. We therefore need to first es-
timate sample frequencies from the observed sample, and then use
these estimates to obtain estimates of the actual frequencies in the
original dataset.

A related problem to top- � and heavy hitters computation is to
estimate the size distribution [17, 18] (estimate the number of items
of a certain size, for all sizes). This is a more general problem than
top- � and heavy hitters queries and sampling can be very inaccurate
for estimating the complete size distribution [8] or the number of
distinct items [4]. Clearly, sampling is too lossy for estimating the
number of items with frequencies that are well under the sampling
rate and techniques that are able to observe the complete dataset
are generally much more effective. For estimating top- � or heavy
hitters, being able to observe the full data set is helpful [5], but we
can obtain good accuracy from samples. The problem of finding
top flows from sampled packet traffic was considered in [2], where
empirical data was used to evaluate the number of samples required
until the top- � set in the sample closely matches the top- � set in the
actual distribution. Their work did not include methods to obtain
confidence intervals. The performance metrics used in [2] are rank-
based rather than weight based. That is, the approximation quality
is measured by the difference between the actual rank of a flow (i.e,
3rd largest in size) to its rank in the sampled trace (i.e., 10th largest
in side), whereas our metrics are based on the weight (size of each
flow). That is, if two flows are of very similar size our metric does
not penalize for not ranking them properly with respect to each
other as two flows that have different weights. As a results, the
conclusion in [5], that a fairly high sampling rate is required may
not be applicable under weight-based metrics.

We are not aware of other work that focused on deriving con-
fidence intervals for top- � and heavy hitters estimates that are de-
rived from sampled records. Related work applied maximum like-
lihood (through the EM Expectation Maximization algorithm) to
estimate the size distribution from samples [8, 18]. Unlike our
schemes, these approaches do not provide rigorous confidence in-
tervals.

Some work on distributed top- � was motivated by information
retrieval applications and assumed sorted accesses to distributed
index list: Each remote server maintains its own top- � list and these
lists can only be accessed in this order. Algorithms developed in
this model included the well known Threshold Algorithm (TA) [10,
11] TPUT [3], and algorithms with probabilistic guarantees [21]. In
this model, the cost is measured by the number of sorted accesses.
These algorithms are suited for applications where sorted accesses
are readily available and more so than random samples such as with
search engines results.

2. PRELIMINARIES
Let � be a set of items with weights ��
�������� for ����� . For ���� , denote ��
��������! #"%$&�'
���� . We denote by (  
���� (top- � set) a

set of the � heaviest items in � , and by )  
��*� (bottom- � set) a set
of the � lightest items in � . We also denote by +  
����,�-�'
.(  
����/�
the weight of the top- � elements in � and by +  
������0�'
#)  
����/�
the weight of the bottom- � elements in � .



We have access to weighted samples, where in each sample, the
probability that an item is drawn is proportional to its weight. In
the analysis and evaluation, we normalize the total weight of all
items to 	 , and use normalized weights for all items. This is done
for convenience of presentation and without loss of generality.

The sample weight of an item 1 using a set of samples 2 is the
fraction of times it is sampled in 2 . We denote the sample weight
of item 1 by �'
3254316� . We define the sample weight of a subset �
of items as the sum of the sample weights of the items in � , and
denote it by ��
32748��� . The sampled top- � and bottom- � sets (the �
items with most/fewest samples in 2 ) and their sampled weights
are denoted by (  
32749�*� , )  
32549��� , +  
32549�����-��
.(  
32748���/� , and+  
32549���,�:��
#)  
32749�*�/� , respectively.

2.1 Top-k problem definition
There are several variations of the approximate top- � problem.

The most basic one is to estimate +<;=
��=� , where � is the distribu-
tion from which we get samples. In this problem we are given a set2 of random samples with replacements from � and a confidence
parameter � . We are interested in an algorithm that computes an
interval > ?@4/ACB such that ?�D + ; 
��=�EDFA with probability 	�GH� .
We call this problem approximate top- � weight.

A possible variation is to compute a set ( of � items, and a frac-
tion I , as small as possible, such that ��
.(J�&�K
L	MGNI8� +O;=
��=� with
probability 	MG�� . If we are interested in absolute error rather than
relative error then we require that �'
.(P�&� +O;=
��=�QGRI with proba-
bility 	�GS� . We call this problem approximate top- � set.

Note that in the approximate top- � set problem we do not explic-
itly require to obtain an estimate of �'
.(P� . In case we can obtain
such an estimate then we also obtain good bounds on + ; 
��=� .

The relation between these two variants is interesting. It seems
that approximating the top- � weight rather than finding an actual
approximate subset is an easier problem (requires fewer samples).
As we shall see, however, there are families of distributions on
which it is much easier to obtain an approximate subset.

There are stronger versions of the approximate top- � weight prob-
lem and the approximate top- � set problem. Two natural ones are
the following. We define here the “set” version of these problem.
The definition of the “weight” version is analogous.� All-prefix approximate top- � set: Compute an ordered set of� items such that with probability 	QGE� for any �5�<	T4VUWUVUX4Y� ,

the first � items have weight that is approximately +  
��=� . We
can require either a small relative error or a small absolute
error.� Per-item approximate top- � set: Compute an ordered set of� items such that with probability 	QGE� for any �5�<	T4VUWUVUX4Y� ,
the � th item in the set has weight that approximately equals
 +  
��=�5G +  �Z�[ 
��=�/� (the weight of the � th heaviest item in� ). Here too we can require either a small relative error or a
small absolute error.

Satisfying the stronger definitions can require substantially more
samples while the weaker definitions suffice for many applications.
It is therefore important to distinguish the different versions of the
problem. We provide algorithms and results for obtaining an ap-
proximate top- � weight, some of our techniques also extend to
other variants.

2.2 Confidence bounds
We recall that for the approximate top- � weight problem we re-

quire that the interval > ?\4LACB produced by the algorithm would con-
tain the weight of ( ; 
��=� with probability 	]G^� . That is if we run

our algorithm many times then it would be “correct” in at least 	=G��
fraction of its runs. We also separately consider the two one-sided
bounds on +<;_
��=� . This holds for other versions of the problem
as well when we estimate other parameters. In general we use the
following standard statistical definitions.

We say that A is a 
L	%G`�%� -confidence upper bound for a parametera
of a distribution � , if the value of

a
in � is not larger than A

with probability 
L	]GN�%� . (This probability is over the draw of the
random samples.) We define 
L	bGR�T� -confidence lower bound for

a
analogously. We say that > ?@4/ACB is a 
L	`GS�T� -confidence interval fora
, if the value of

a
is not larger than A and not smaller than ? with

probability 
L	�G��T� .
If c'
�� [ � is a 
L	JGd� [ � -confidence upper bound for a value ande 
��gfW� is a 
L	�G:�gfX� -confidence lower bound for the same value,

then 
�c'
�� [ �ih e 
��gfV�/�/j\k&lH
�c'
�� [ �mG e 
��gfW�/�/j\k is a 
L	bGn� [ Go�gfW� -
confidence interval for the value. We refer to lp
�c'
�� [ �CG e 
�� f �/�/jTk
as the error bars and to 
�c'
�� [ �*h e 
��WfV�/�/jTk as the estimate.

Bounds for proportions. Consider a sample of size q obtained
for a proportion query, with rs q positive samples. Let c'
#t*48qT4/�T� be
the largest value u such that a proportion u is at least � likely to
have at most t positive samples in a sample of size q . Then it is
easy to see that c'
3qQrs 48qT4/�T� a 
L	JGH�T� -confidence upper bound on
the proportion s .

Similarly, let
e 
#tm48qT4/�%� be the smallest value u such that a pro-

portion u is at least � likely to have at least t positive samples in
a sample of size q . Then

e 
3qmrs 48qT4/�T� is a 
L	`G��T� -confidence lower
bound on the proportion s .

Exact values of these bounds are defined by the Binomial dis-
tribution. Approximations can be obtained using Chernoff bounds,
tables produced by simulations, or via the Poisson or Normal ap-
proximation. The Normal approximation applies when s qJ�wv andq%
L	%G s �x�:v . The standard error is approximated by y rs 
L	MGzrs �/jTq .
Difference of two proportions. We use 
L	]GH�%� -confidence
upper bounds for the difference of two proportions. Suppose we
have { [ samples from a Binomial distribution with mean s [ and{*f samples from a Binomial distribution with mean s f . Denote the
respective sample means by rs [ and rs f . Observe that the expecta-
tion of rs [ G|rs f is s [ G s f .

We use the notation }p
�rs [ 4L{ [ 4&rs f 4/{ f 4/�T� for the 
L	TGM�T� -confidence
upper bound on s [ G s f .

We can apply bounds for proportions to bound the difference:
It is easy to see that c'
�{ [ rs [ 4Y{ [ 4Y�%j\kT�PG e 
�{*fQrs fg4/{*f\4/�%j\kT� is a
L	JGd�T� -confidence upper bound on the difference s [ G s f . This
bound, however, is not tight. The prevailing statistical method is to
use the Normal Approximation (that is based on the fact that if the
two random variables are approximate Gaussians, so is their differ-
ence). The Normal approximation is applicable if s [ { [ , 
L	%G s [ �~{ [ ,s f { f and 
L	`G s f �~{ f�� v . The approximate standard error on the
difference estimate rs [ G�rs f is y rs [ 
L	�G�rs [ �/jg{ [ h�rs fT
L	�G|rs fV�/j@{*f .
2.3 Cumulative confidence bounds

Consider an (arbitrary) distribution on > �=4W	9B with cumulative dis-
tribution function �E
3� . That is, for all ��D!�NDz	 , the probability
of drawing a value that is at most � is �E
��Q� .

For a random sample 2 of points from the distribution. Let r�p
��Q�
be the fraction of the points in 2 which are smaller than � . We
would like to obtain a (simultaneous) 
L	EG!�T� -confidence upper
bounds for �E
��V� for all �]�w� . Observe that this is a generalization
of proportion estimation: Proportion estimation is equivalent to es-
timating or obtaining an upper bound on a single point s ���E
��_�



without estimating �E
��V� for all � � � .
The cumulative bounds we consider are derived with respect to a

certain ��D:�oD<	 . We obtain a 
L	MGN�T� -confidence multiplicative
error bound for �E
��W� for all �P�d� .

We define the random variable IW
���482,� to be ���@�_�T�C���7� �g� Z����� �g��7� �g� .
Let �p
 s 48qT4/�T� be the smallest fraction such that for every distribu-
tion �E
3� and � such that �E
��_�&� s , and a random sample 2 of sizeq drawn from � , we have that IW
���482,�xD��p
 s 4YqT4/�T� with probability	MGS� (over the choice of 2 ).

We define the cumulative 
L	'G-�T� -confidence upper bound on�E
��V� for all ����� as follows. Let rs � r�E
��C� . We look for the
largest u such that u=
L	�Gd�p
�u=4Yq%4L�%�/�'D�rs . The cumulative upper
bound is

��7� �g�[/ZQ� ���V� �9� � � for every �o�d� .
We also consider cumulative bounds that are multiplicative on�z��� and additive on �z��� . We refer to these bounds as

cumulative h bounds. DefineI8�x
��Q4Y2��,�:���@�   IW
���482,�94/���g��T¡i� �E
��Q��G r�E
��Q��E
��_� ¢ U
Let � � 
 s 4YqT4/�T� be the smallest fraction such that for every dis-
tribution �E
3� and � such that �E
��_�n� s , and a random sample2 of size q drawn from � , we have that I � 
���482,�RD£�'
 s 4YqT4/�T�
with probability 	�G�� (over the choice of 2 ). The cumulative h
L	PGH�%� -confidence upper bound on �E
��W� for all ���z� is defined
as follows. Let rs � r�p
��_� . We look for the largest u such thatu=
L	CG��'
�u=48qT4/�T�/�&D�rs . The cumulative h upper bound is

��7� �g�[/ZQ� ���V� �8� � �
for every �o�d� and r�'
��Q�*hNu\�p
�u¤48qT4/�%� for every �oD�� .

It is known that �'
 s 4YqT4/�T� and � � 
 s 4Yq%4L�%� are not much larger
than the relative error in estimating a proportion s using q draws
with confidence 	,G¥� . Furthermore they have the same asymptotic
behavior as proportion estimates as q grows [6]. Simulations show
that we need about kTvT¦ more samples for the cumulative upper
bound to be as tight as an upper bound on a proportion �E
��_� .
2.4 Data Sets

We use 4 data sets of IP flows collected on a large ISP network
in a 10 minute interval during October, 2005. We looked at aggre-
gations according to IP source address (366K distinct values), IP
destination address (517K distinct values), source port (55K dis-
tinct values), and destination port (57k distinct values). We also
use three additional Web traffic datasets. WorldCup World Cup 98
May 1 Web server logs with 4021 distinct items. Dec-64: Web
proxy traces that were taken at Digital Equipment Corporation on
September 16, 1996, 497597 items. Lbl-100: 30 days of all wide-
area TCP connections between the Lawrence Berkeley Laboratory
(LBL) and the rest of the world, 13783 distinct items. Figure 1
shows the top- � weights for these distributions that show an obvi-
ous Zipf-like form.

3. BASIC BOUNDS FOR TOP-K SAMPLING
When estimating a proportion, we use the fraction of positive

examples in the sample as our estimator. We then determine a con-
fidence interval for this estimate. Using the notation we introduced
earlier, we can use the interval from

e 
@rs q%4Yq%4L�%� to c'
@rs qT4YqT4/�T� as akg� confidence interval. It is also well understood how to obtain the
number of samples needed for proportion estimation within some
confidence and error bounds when the proportion is at least s .

When estimating the top- � weight from samples, we would like
to derive confidence intervals and also to determine the size of a
fixed sample needed to answer a top- � query when the size of the
top- � set is at least s .

The natural top- � candidate is the set of � most sampled items.
The natural estimator for the weight of the top- � set is the sampled
weight of the sampled top- � items. This estimator, however, is in-
herently biased. The expectation of the sampled weight of the sam-
ple top- � is always at least as large and generally is larger than the
size of the top- � set. The bias depends on the number of samples
and vanishes as the number of samples grows. It also depends on
the distribution. To design estimation procedures or to obtain con-
fidence intervals for a top- � estimate we have to account for both
the standard error, as in proportion estimation, and for the bias.

3.1 Top-k versus proportion estimation
We show that top- 	 estimation is at least as hard as estimating

a proportion. Intuitively, we expect this to be the case since we
do not need to only estimate the size of a particular set but also to
bound away the size of all items.

LEMMA 3.1. Let § be an algorithm that approximates the top-	 weight in a distribution with confidence 	�G:� . We can use §
to derive an algorithm §]¨ for a proportion estimation query. The
accuracy of § ¨ in estimating a proportion s is no worse than the
accuracy of § on a distribution with top- 	 weight equal to s .

PROOF. An input to § ¨ is a set 2 ¨ of q coin flips of a coin with
bias s . Algorithm §]¨ translates 27¨ to a sample 2 from a distribu-
tion © in which we have one item � of weight s and every other
item has negligible small weight. We generate 2 by replacing each
positive sample in 2 ¨ by a draw of � and every negative example by
a draw of a different element (a unique element per each negative
example). Algorithm § ¨ applies § to 2 and returns the result.

It is also not hard to see that the top- � problem is at least as hard
as the top- 	 problem (or as the top- � problem for �b��� .). This is ob-
vious for the stronger (per item) versions of the top- � problem but
also holds for the top- � weight and the top- � set problems. To see
this, consider a stream of samples for a top- 	 problem. Label the1 th sample of item � by the label 
��Y48c'> �¤4WUWUVUV4Y�xGo	9Bª� (where c'>�UWUVU B
is a Uniform random selection). This is equivalent to drawing from
a distribution where each item is partitioned to � same-size parts.
The top- � weight in this distribution is the same as the top-1 weight
in the original distribution.

Note that the reduction from top-1 to proportion is not applicable
to the version of the top- 	 problem where we only want the set,
without an approximation of the weight itself.

4. THE NAIVE CONFIDENCE INTERVAL
Suppose that we sampled q times and observed that the sampled

weight of the sampled top- � set is r� . For a given q , r� , � , and � ,
we define

e ;_
 r��qT48qT4/�%� to be the smallest � ¨ such that there exists
a distribution with top- � weight that is at most � ¨ such that usingq samples, the sampled weight of the sampled top- � set is at least� likely to be at least � . We similarly define c ; 
 r�Qq%4Yq%4~�%� to be the
largest � ¨ such that there is a distribution with top- � weight that
is at least � ¨ such that using q samples, the sampled weight of the
sampled top- � set is at least � likely to be at most � . It follows
from the definitions that c�;=
 r��q%4Yq%4L�%� (respectively,

e ;¤
 r��qT48qT4/�%� )
is a 
L	�Gw�T� -confidence upper (respectively, lower) bound on the
top- � weight.

These definitions do not provide a way to computationally obtain
these bounds, since they require us to consider all possible distri-
butions of items weights.

We first consider the upper bound and show that the proportion
L	�GR�T� -confidence upper bound can be used as an upper bound on
the top- � weight:
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Figure 1: top- � weights for test distributions

LEMMA 4.1. c�;_
 r��qT48qT4/�T�&D:c'
 r�mqT4/q%4L�%� .
Lemma 4.1 is an immediate corollary of the following lemma

and monotonicity of c'
 r�QqT48qT4L�T� (with respect to r� ).

LEMMA 4.2. The distribution function of the sampled weight
of the sampled top- � dominates that of the sampled weight of the
top- � set. That is, for all « � � ,¬J­@® � � +K;=
3254/�=�b��«���� ¬J­\® � � �'
3254~(*;¤
��=�/�x�d«��PU
In particular, ¯�
 + ; 
3254/�=�/�b� + ; 
��=� (the expectation of the sam-
pled weight of the sampled top- � set is an upper bound on the ac-
tual top- � weight.)

PROOF. Observe that the sample weight of the sample top- � is
at least the sample weight of the actual top- � set (assume top- � set
is unique using arbitrary tie breaking).

We next consider obtaining a lower bound on the top- � weight.
The definition of

e ;¤
 r��qT48qT4/�%� was with respect to all distributions.
The following Lemma restricts the set of distributions that we have
to consider. We can then compute

e ; 
 r��qT48qT4/�%� using simulations
on the more restricted set of distributions.

Let � [ and � f be two distributions. We say that � [ dominates � f
if for all ���0	 , +  
�� [ �&� +  
��gfV� .

The next Lemma shows that if � [ dominates �gf then the prob-
ability distribution function of the sampled weight of the sampled
top- � for � [ dominates that of �@f .

LEMMA 4.3. If the weighted set � [ dominates �gf then for any�!�|	 , and number of samples qN�£	 , the distribution function
of the sampled weight of the sampled top- � with � [ dominates the
distribution function for � f : that is, for any ° , the probability that
the sampled top- � would have at least ° samples with � [ is at least
as large as with � f .

PROOF. We prove the claim for two distributions � [ and � f that
are identical except for two items � [ and �Vf . In �gf the items � [ and� f have weights � [ and � f , respectively. In � [ the items � [ and � f
have weights � [ h�± and �`f�GH± , respectively for some ±²�!� .
Clearly if the claim holds for � [ and � f as above then it holds in
general. This is true since given any two distributions � [ and �Wf
such that � [ dominates � f we can find a sequence of distributions�Wfn�³�¤´\4/� [ 4VUXUVUV4/�%µ¥�³� [ where for every �dD�1w��? , �@¶X� [f is
obtained from � ¶f by shifting ± weight from a smaller item to a
larger one.

Consider a third distribution �W· that is identical to � [ and � f with
respect to all items other than � [ and �Wf . The distribution � · , similar
to � [ , has an item � [ with weight � [ , and it also has two items � f
of weight �]fxGN± and � · of weight ± .

We sample q items from � f by sampling q items from �g· and
considering any sample of �Wf or � · as a sample of �Wf . Similarly we
sample q items from � [ by sampling q items from � · and consider-
ing a sample from � f as a sample of � f and a sample of either � [ or�Wf as a sample of � [ .

Suppose we sample a set 2 of q items from �W· and map them as
above to a sample 2 [ of q items from � [ and to a sample 2*f of q
items from � f . We show that for every � and ° , ¬J­\® � � + ; 
32 [ 4/� [ �&�°8� is not smaller than

¬J­\® � � +<;=
32mf@4/�gfW�&�H°8� .
Fix the number of samples of each item different of � [ , �Wf , and� · , fix the number of samples of � · to be

­
, and fix the number

of samples of � [ and �Vf together to be ¸ . Consider only samples2 of �W· that satisfy these conditions. We look at the probability
space conditioned on these choices where the only freedom that we
have left is to split the combined ¸ draws of � [ and � f , between � [
and �Wf . We show that in this conditioned space for every � and ° ,¬J­@® � � + ; 
32 [ 4L� [ �`�:°Y� is not smaller than

¬J­\® � � + ; 
32 f 4/� f �`�°8� .
Over this conditioned probability space, for a fix 1E�w¸ojTk , con-

sider the event § ¶ where the number of samples of � [ in 2 is 1
and the number of samples of �Wf in 2 is ¸|Gd1 . Consider also
the event §]¹ Z ¶ where the number of samples of � [ is ¸�G:1
and the number of samples of �Wf is 1 . In § ¶ the the maximum
among the weights of � [ and � f in 2 [ is ���g� � 1�h ­ 4L¸ºG�1¤���1�h ­ , and the maximum among the weights of � [ and �Wf in 2mf is���@� � 1T4Y¸KG'15h ­ � which is smaller than 1�h ­ . On the other hand,
in §]¹ Z ¶ the maximum among the weights of � [ and � f in 2 [ is���@� � ¸³GS1�h ­ 4#1¤� , and the maximum among the weights of � [
and � f in 2 f is ���g� � ¸�Go1T4�1]h ­ �J�H1]h ­ .

Consider the weight of the top- � set of 2*f in § ¹ Z ¶ , and the
weight of the top- � set of 2 [ in §P¹ Z ¶ . If both are at least ° then
they both are at least ° in § ¶ , and both

¬J­@® � � +<;¤
32 [ 4L� [ ����°8�
and

¬J­@® � � +<;¤
32*f\4L�gfV�o�»°Y� equal 1. However it could be that
in § ¹ Z ¶ the weight of the top- � set of 2*f is larger than ° but the
weight of the top-k set in 2 [ is smaller than ° . However if this is
indeed the case in §P¹ Z ¶ , then in § ¶ the weight of the top- � set of2 [ is larger than ° but the weight of the top-k set in 2�f is smaller
than ° .



Let �p�-� [ j=
�� [ h^�Wf&G^±p� . Since¬J­\® � � § ¶ �P�³¼ ¸ 1»½ �\¶¤
L	�GS�_� ¹ Z ¶��¼ ¸¸�G�1d½ 
L	�GS�_��¶¤
��_� ¹ Z ¶J� ¬J­\® � � § ¹ Z ¶ �P4
it follows that

¬J­@® � � +<;=
32 [ 4L� [ �&�H°8� is not smaller than¬J­@® � � + ; 
32 f 4/� f �&�H°8� .
Lemma 4.3 identifies the family of “worst-case” distributions

among all distributions that have top- � weight equal to � . That
is, for any threshold ° and for any � , one of the distributions in this
family maximizes the probability that the sampled weight of the
sampled top- � exceeds ° . Therefore, to find

e ; 
 r�Qq%4/qT4/�%� , instead of
all distributions, we can consider the more restricted set of most-
dominant distributions.

The most-dominant distribution is determined once we fix both
the weight � of the top- � , and the weight �¾�:?�DK��j\� of the � th
largest item. The top-1 item in this distribution has weight ��G¥
#�bG	W��?Wj@� , the next �EGw	 heaviest items have weight ? , next there are¿ 
L	�G:���/jW?XÀ items of weight ? and then possibly another item of
weight 	,G¥? ¿ 
L	7Gn���/jg?9À . Example is provided in Figure 3. Fix the
weight � of the top- � . Let Á µ be the most dominant distribution
with value ? for the � th largest item. We can use simulations to
determine the threshold value ° µ so that with confidence at most � ,
the sampled weight of the sampled top- � in q samples from Á µ is
at least ° µ . We associate � with the value � ¹ �z���@� µ ° µ . Clearly� ¹ decreases with � . The value

e ;¤
 r�Qq%4/qT4/�%� is the largest � such
that � ¹ D r� . This mapping from the observed value r� to the lower
bound �g¹ can be computed once and stored in a table, or can be
produced on the fly as needed.

Note that for the top-1 problem, Lemma 4.3 provides us with
a single “worst-case” most-dominant distribution: Since we only
need to consider distributions where the “ � th” (in this case, the top)
item is � : the distribution has

¿ 	gj\�CÀ items of weight � and possibly
an additional item of weight 	�G^� ¿ 	WjT�CÀ .
The Naive confidence interval. We obtained our first method
to derive a confidence interval for a top- � weight estimate. Suppose
after q samples we observe that the sampled weight of the sampled
top- � set is r� .

We use the estimate 
 e ;=
 r��qT48qT4/�TjTkT�&hOc'
 r�QqT48qT4/�%j\kT�/�/j\k with
error bars of lp
�c'
 r��qT48qT4/�%j\kT�5G e ; 
 r��qT48qT4/�TjTk\�/�/jTk . Since the two
one-sided confidence intervals are not symmetric, we can reduce
the combined width of the error bars by using a different confidence
level for the upper and lower bounds: For �E�:� ¨ �:� we can use
the estimate 
 e ;=
 r��qT48qT4/� ¨ �7h!c'
 r�QqT48qT4L�'GH� ¨ �/�/jTk with error barslp
�c'
 r��qT48qT4/�@¨���G e ;=
 r��q%4Yq%4L�PG��\¨.�/�/jTk .

This estimate applies to the weight of the top- � set. We next
consider the problem of bounding the (real) weight of the sampled
top- � set:

LEMMA 4.4.
e [ 
 r�QqT4YqT4/�T� is a 
L	bG��%� -confidence lower bound

on the weight of the sampled top-1 item.

PROOF. We first define
e ¨ ; 
 r��qT48qT4/�T� , the 
L	ÂGK�T� -confidence

lower bound on the actual weight of the sampled top- � set. It is de-
fined as the minimum, over distributions � , of the minimum value? , such that the probability is at least � that the following combined
property holds for the sampled top- � set:� the sampled weight is at least r� , and� the actual weight is at most ? .

It is easy to see that
e ¨ ; 
 r�QqT48qT4L�T�ÂD e ;_
 r��qT48qT4/�T� , since if we re-

strict the set of distributions considered when calculating
e ¨ ; to

those with top- � weight that is at most ? , we obtain
e ;=
 r��qT48qT4/�T� .

For �E�<	 , it is easy to see that equality holds, that is,
e ¨ [ 
 r��qT48qT4/�%�,�e [ 
 r��q%4Yq%4L�%� . Consider a distribution with items of weight larger

than ? . It is easy to see that removal of these items or replacing
them with items of weight smaller than ? only increases the proba-
bility that the sampled top- � set has the combined property.

For � � 	 we conjecture the following:

CONJECTURE 4.5.
e ;=
 r�QqT4YqT4/�T� is a 
L	`GN�T� -confidence lower

bound on the weight of the sampled top- � set.

To prove the conjecture we need to show that
e ¨ ; 
 r��qT48qT4/�T��� e ; 
 r��qT48qT4/�T� ,

that is, there is distribution that minimize ? that has top- � weight
that is at most ? .

Our experimental observations support the conjecture in that the
actual weight of the top- � weight lies inside the confidence interval.

4.1 Asymptotics of the Naive estimator
For a given distribution � , and given I and � , one can consider

the smallest number of samples such that the sampled weight of the
sampled top- 	 item is in the interval 
L	Cl¾I9� + [ 
��=� with confidence	,G�� . When we take the maximum of this number of samples over
all distributions of top-1 weight � , we obtain the smallest number
of samples that suffices to answer a top- 	 query for a specified � andI , when the base distribution has top-1 weight at least � . The most
dominant distribution with top-1 item of weight � has 	gjT� items of
weight � . For this distribution, we need each of the 	WjT� items to
be estimated to within 
L	7hSI9� with confidence 	bGR�C� . Using mul-
tiplicative Chernoff bounds we obtain that the number of samples
needed is ÃE
3� Z�[ I Z f 
�ÄÆÅ�� Z�[ hoÄÆÅ`� Z�[ �/� . This dependence is super
linear in � Z�[ . This can be contrasted with the number of samples
needed to estimate a proportion of value at least s , for a given I , � ,
and s . From Chernoff bounds we have ÃE
 s Z*[ I Z f ÄÇÅM� Z�[ � , which
is linear in s Z*[ .

The naive bounds are derived under “worst-case” assumptions on
the distribution, and therefore subjected to the ÃE
3� Z�[ I Z f 
�ÄÇÅM� Z�[ hÄÆÅ]� Z�[ �/� dependence. A distribution where all items other than the
top- 	 are tiny behaves like a proportion and we obtain a good esti-
mate of the top-1 weight after ÃE
3� Z*[ I Z f ÄÆÅ�� Z�[ � samples. Zipf-
like distributions, that arise in natural settings, have asymptotic
that is closer to proportion estimation when the distribution is more
skewed.

This point is demonstrated in Figure 2. The figure shows sam-
pling from a distribution with top-1 item that is of weight �=U �%v . It
shows the sampled weight of the sampled top-1 item on a uniform
distribution where there are 20 items of weight �=U �%v each. It also
shows the sampled weight of a sampled top-1 item in a distribu-
tion where there is a single item of weight �=U �%v and other items
have infinitesimally small weight. The averaging of the expected
sampled weight of the sampled top-1 over 1000 runs illustrates the
bias of the estimator on the two distributions. Evidently, the bias
quickly vanishes on the second distribution but is significant for
the first distribution. The naive confidence bound accounts for this
maximum possible bias, so even on this simple distribution, after	W�¤48�T�\� samples would only be able to guarantee a 5% error bars.
The figure shows a similar situation when we measure the sampled
weight of the top-5 items in a distribution with v items of weight�=U �Tv each and all other items infinitesimally small The convergence
is similar to that of estimating a proportion of �=U kTv ; When there are
20 items of weight �=U �Tv , convergence is much slower and there is a
significant bias.
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Figure 2: Convergence of top- � estimator. The top figures are
for top-1 item of weight �=U �%v . The bottom figures for top-5 items
of weight �=U kTv . The curve “top-1 uniform” shows the sample
weight of the sampled top-1 item in a uniform distribution. The
curve “top-1 proportion-like” shows the sample weight of the
sampled top-1 item from a distribution with a single item of
weight 0.05 and all the rest infinitesimally small. The plots for
top-5 are annotated similarly.

These arguments indicate that the Naive estimator provides us
with a pessimistic lower bounds that also exhibit worse asymptotics
than what we can hope to obtain for some natural distributions.
We therefore devise and evaluate procedures to derive tighter lower
bounds by exploiting more information on the distribution.

5. CUB BOUNDS
The derivation of CUB bounds resembles that of the Naive bound.

As with the Naive bound, we look for the distribution with the
smallest top- � weight that is at least � likely to have sampled top- �
weight that “matches our sample.” The difference is that we not
only look at the sampled top- � weight but use further statistics on
the sample to further restrict the set of distributions we have to con-
sider. By doing this, we are able to tighten the bound.

The bound is derived in two steps: (for � ¨ Dd� )
1. Cumulative upper bound (CUB) derivation: We obtain 
L	MG� ¨ � -confidence cumulative upper bounds on the weight of+  
��=� for all �P�<� (see Subsection 2.3). We obtain � [ DÈVÈVÈ DO�J;oDz�P; � [ D ÈXÈWÈ such that for all �J�É	 , �  is an

upper bound on the top- � weight.

2. Lower bound derivation: We derive a 
L	PGw
���GN� ¨ �/� confi-
dence lower bound

e ¨ ; 
 � �  �64 r�QqT4YqT4/��GH� ¨ � as follows. We
consider all distributions that are consistent with the obtained
CUB, that is, � such that +  
����ND��  for all ( ����� ).
We look for the distribution � with smallest top- � weight+<;¤
���� that is at least 
��PG�� ¨ � likely to have a sampled top-� weight of at least +<;=
3254/�=� . The lower bound is then set
to +<;=
��*� .

Correctness is immediate. Consider a distribution. The proba-
bility that the cumulative upper bound obtained for it fails (even
for one value) is at most �\¨ . If the distribution obeys the cumula-
tive upper bound derived for it then the probability that the lower
bound derived in the second step is incorrect is at most 
���Gd�T¨ª� .

Therefore, for any distribution, the probability that it does not lie in
its confidence interval is at most � .

We derive a 
L	�G��T� confidence lower bound
e ;=
 � �  �%4 r��qT48qT4/�%�

on the top- � weight as follows. (The Naive bound is
e ;_
 r��qT48qT4/�T��Êe ; 
 � 	\4W	T4W	\4VUVUWU �64 r�QqT48qT4/�T� .) Similarly to the Naive bound, we re-

strict the set of distributions considered for the lower bound deriva-
tion by only considering the representative set of most dominant
distributions. Applying Lemma 4.3 (similarly to its usage for the
Naive bounds), we obtain that the most dominant distributions that
conform to

� �  � upper bounds is determined once we fix the top- �
weight � and the weight ?�D»��j\� of the � th heaviest item. For� � � , the weight of the � th item is as large as possible given
that it is no larger than the 
��]Gz	W� th item and that the sum of
the top- � items is at most �  . If �  for �Â�
� are not restricted
( � [ �º�Pfn�ËUVUWU&�º�J;VÌ [ �Ë	 ), then the � -heaviest items are
as in the naive bounds: the top-1 weight is ��G!
#�¾G-	W��? and the
next �¾G0	 heaviest items have weight ? . Otherwise, each of the
first � items has weight at least ? , with as much weight as possible
placed on earlier items. Formally, let 	ÂD�1�DK� be the minimum
such that � ¶ Í Ì [ � Í h:
#�'G�16��?J�w� . The most dominant distribu-
tion is such that the top 1pG-	 items have weights � [ 4VUVUWUV4Y� ¶ Z*[ ;the items 1�h<	T4VUVUXUY� have weight ? ; and the 1 th item has weight��G��H¶ Z*[Í Ì [ � ¶ G�
#�'Go16��? .Figure 3 shows most dominant distributions for �H�£	W�\� with
top- � weight equal to �¤U Î that are constructed subject to CUB con-
straints �  for ���!	W�\� and � [ �OUXUVU¤�-�PÏ/Ï`�<	 . The dotted lines
show the most dominant distributions without the CUB constraints.
The figure helps visualize the benefit of CUB: The CUB constraints
reduce the size and the number of larger non top- � items and by do-
ing so reduce the bias of the top- � estimator (the sampled weight
of the sample top- � ).
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Figure 3: Most dominant distributions for �R��	W�\� and top- �
weight �=U Î . These distributions are for ?n�»�=U �T�@Î (Uniform),?S�Ë�¤U �T�%k , and ?S���=U �T�\�=	 . We also show the distributions
subject to upper bounds �  for �x�<	W�T� . The distribution with?M�-�¤U �\�T�¤	 is not affected by the CUB.

We use simulations on these most-dominant distributions to de-
termine the probability that the sampled weight of the sampled top-� matches or exceeds the observed one.

Since there are many parameters in the upper bound (
� �  � for�p�
	 ), we can not use a precomputed table for the lower bounde ;=
 � �  �%4 r��qT48qT4/�%� ) like we could do for the naive bound
e ;=
 r��qT48qT4/�T� .

Therefore the CUB bounds are much more computationally inten-
sive than the Naive bounds.

The confidence interval obtained applies to the weight +O;=
��=�
of the top- � set. Using similar arguments to the naive derivation,



for ���³	 , the confidence interval applies to the actual weight of
the sampled top-1 set (see Lemma 4.4). We conjecture that it also
applies to the actual weight of the set �@; when � � 	 (see Conjec-
ture 4.5).

The CUB method is based on performing simulations based on
statistics derived from the sample and in that it is related to statisti-
cal bootstrap method [9].

6. CROSS VALIDATION METHODS
We apply validation and cross validation frameworks and bor-

row terminology from hypothesis testing literature. In that context,
the sample is split into learning and testing parts. A hypothesis is
constructed using the learning subsample and its error rate is com-
puted on the testing data. This is used to estimate the generalization
error of a model learning procedure. In our analogous setting, we
compute the sampled top- � set from the learning data, and estimate
its weight using the testing data. Since the learning and testing
parts are independent, the expectation of the sample weight of that
set in the testing data is equal to its actual weight, which is at most
the top- � weight. We then apply proportion bounds to obtain a
( 
L	MG��T� -confidence) lower bound on the top- � weight.

LEMMA 6.1. The distribution of the sampled weight of any par-
ticular size- � subset is dominated by the sample weight distribution
of the top- � set.

PROOF. Any fixed � -subset has weight at most that of the top-� .

Note that just like the case of applying proportion upper bounds
to the estimate that is biased upwards, the application of propor-
tion lower bounds to validation estimators is pessimistic in that it is
applied to a quantity that its expectation is below that of the top- �
weight. Proportion bounds are calculated to be correct for unbiased
quantities. Therefore, we expect the fraction of runs on which the
estimate is incorrect to be lower than the corresponding � value. In
particular for smaller number of samples when the bias is larger.

We start with the plain split-sample validation for which we ob-
tain error bars using proportion bounds. This method allows us
to obtain a top- � candidate and obtain a lower bound on its actual
weight. The statistics literature shows that extensions on this vali-
dation method, that are referred to as cross validation exhibit better
performance in the hypothesis testing context. We obtain top- � es-
timators from analogous cross-validation methods: the � -fold cross
validation and the leave- ¸ µ -out cross validation. These estimates
allow us to derive lower bounds on the top- � weight. The expec-
tation of these estimators is equal to the expectation of the actual
weight of a sampled top- � set obtained in a sample of size equal
to that of the learning sample. For a larger learning set, the ex-
pectation is higher and closer to the top- � weight, and therefore
allows for tighter bound. On the other hand, the variance of the es-
timate depends on the size of the testing set and the cross validation
method. We study these tradeoffs and the derivation of confidence
intervals.

We also study the derivation of upper bounds on the difference
between the weight of our set to that of the actual top- � set. That is,
upper bound the potential increase in weight by exchanging items
in our candidate set with items outside it. We apply a variant of the
split-sample validation method to directly bound this difference.

6.1 Split-sample (hold out) Validation
We denote the learning sample by 2mÐ and the testing sample2 µ and their respective sizes by ¸ Ð and ¸ µ . We have ¸ Ð �¸ µ �Ñqgj\k . The sampled top- � set in the learning sample, � ; � Ð �

(*;=
32 Ð 4/�=� , is our top- � candidate and its sampled weight �'
32 Ð 4/�g; � Ð �in the learning sample is a sample from a quantity that upper bounds+<;¤
��=� and hence used to derive an upper bound on the top- �
weight. The sampled weight of � ; � Ð in the testing sample is used
to derive a lower bound. Since 2 µ is independent of 2 Ð , the ex-
pectation of the sampled weight of �@; � Ð in 2 µ is the actual weight
of �g; � Ð . In fact, the distribution of ��
32 µ 4/�g; � Ð � is a Binomial ran-
dom variable of sampling a proportion �'
��g; � Ð �&¸ µ times. Since��
��g; � Ð �dD +<;¤
��=� , the expectation of the estimator is a lower
bound on +K;_
��=� . When computing error bars, both ��
32 Ð 4/�g; � Ð �and �'
32 µ 4/� ; � Ð � can be treated as proportion samples from propor-
tions that are at least and at most the top- � weight, respectively.

For the upper bound we can use c'
��%�,�0c'
�¸ Ð ��
32 Ð 4L�g; � Ð �94/¸ Ð 4/�%�or the generally tighter upper bound derived from the complete
sample c'
��T�n�Òc'
�¸¥�'
3254L�g;\�94/¸S4L�%� . For the lower bound we
use
e 
��T�b� e 
�¸ µ ��
32 µ 4L�g; � Ð �94/¸ µ 4/�T�/� .We therefore have 
�c'
��%j\kT�bh e 
��%j\kT�/�/jTk as our top- � weight

estimate. The error bars are lp
�c'
��TjTk\��G e 
��TjTk\�/�/jTk . Note that
the estimate is valid not only for the top- � weight but also for the
actual weight of the set � ; � Ð .
6.2 r-fold Cross Validation

In 2-fold (“double”) cross validation the sample is again split into
two equal parts 2 Ð and 2 µ . We compute the sampled top- � sets in
both 2QÐ and 2 µ . Denote the two sets by � ; � Ð and � ; � µ . Denote by�g; the sampled top- � set in the full sample. For the lower bound
we use

e 
��%�`� e 
/
�¸ µ ��
32 µ 4/�g; � Ð ��h�¸ Ð ��
32 Ð 4/�W; � µ �/�/jTk649qgjTk¤4L�%� .We argue that this is a 
L	mGÂ�T� -confidence lower bound on the top- �
weight: The q���¸ Ð h0¸ µ samples are taken from two differ-
ent proportions, but both these proportions are at most the top- �
weight. The expectation of this 2-fold estimate is the same as for
the split sample estimator, but the motivation for introducing this
refinement is that we reduce the variance by averaging over two
sets.

We conjecture that this bound is also applicable to the weight of
the set �g; :

CONJECTURE 6.2.
e 
��T� is a 
L	JGH�T� -confidence lower bound

on the weight of the set � ; .
This approach can be extended to

­
-fold cross validation where

the sample is split into
­

equal parts. For each part, we compute the
sampled top- � set on the learning set that contains the other

­ Gw	
parts and then compute its weight on the held-out part. We denote
the
­
-fold cross validation estimate by ÓÂÔ .

LEMMA 6.3. For any
­
, ¯Â
�ÓEÔg�xD +K;=
��=� .

PROOF. For each part, we have qgj ­ independent samples from a
proportion that is the actual weight of some � -subset (therefore is at
most the top- � weight). The proof follows from linearity of expec-
tation. (Note that there is dependence between different parts.)

As noted above, the expectation of Ó Ô is equal to the expectation of
the actual weight of a sampled top- � set obtained using 
L	�G�	gj ­ �/q
samples.

6.3 Leave-out Cross Validation.
Leave- ¸ µ -out cross validation is a “smoothed” version of

­
-fold

cross validation.
Consider some fixed �RD0¸oÐRD0¸²G:	 . The estimator �¤¹&Õ is

the average, over all subsets 2 Ð �²2 of size Ö 2 Ð Ö,�²¸ Ð , of the
sampled weight in 2 µ �!2�×�2mÐ of the sampled top- � subset in 2mÐ .
(When there are multiple items with � th largest number of samples
we emulate uniform at random selection among them to determine



which ones are included in the sampled top- � set. This selection is
also factored into the estimators by averaging over all selections.)
We expect the leave-out estimators to perform better than the

­
-fold

estimators since we expect the variance of �¤¹xÕ to be at most that
of ÓpÔ with

­ �!q@jg¸ µ .
LEMMA 6.4. For all ¸ Ð , ¯Â
�� ¹xÕ �&D +<;=
��=� .
PROOF. Consider a particular size- ¸nÐ subset of the sample spec-

ified by its positions in the sample. The sampled weight in 2 µ �2S×�2mÐ of the sampled top- � subset in 2mÐ is equivalent to takingÖ 2 µ Ö independent samples from a proportion equal to the weight of
the sampled top- � set in 2 Ð , which by definition is at most +<;=
��=� .
The proof follows by linearity of expectation.

The expectation of the estimator � ¹ Õ is equal to the expectation of
the actual weight of the sampled top- � set in a sample of size ¸nÐ .
Computing leave-out estimators. As the leave-out estima-
tors are defined over all possible subsets, direct computation can be
prohibitive. The following Lemma provides us with a computation-
ally easy way to obtain approximate values for the leave-out estima-
tors. For a multiset 2 , integer � , and item id � , let

¬ 
��Y4/�Q4Y¸�4Y2,� be
the probability that � is in the top- � items in a random ¸ -size subset
of 2 . We account for “partial fit” in the definition of

¬ 
��Y4/�Q4/¸�482,� .
Consider some subset of 2 of size ¸ . If the count of � exceeds that
of the � th most frequent item, the contribution is 	 . If it is strictly
lower than the frequency of the � th most frequent item in the sub-
set then the contribution is � . Otherwise, let � be the total number
of items with frequency equal to that of the � th most frequent item,
and let Ø be the number of such items in the top- � set. The contribu-
tion is then ØWjg� . ¬ 
��/4Y��4/¸�482,� is the average of these contributions
over all possible ¸ -subsets of 2 .

LEMMA 6.5. Let � be the id of the � th most common item in 2
and let �  be its number of occurrences. For any ¸ Ð ,� ¹xÕ �0Ù  �  ¬ 
��/4Y��4Y¸ Ð 4Y2o× � �~�\�bU
To estimate � ¹xÕ we use subsets of size ¸ Ð h�	 from 2 . From each
sample, we can compute a contribution to

¬ 
��/4Y�Q4Y¸oÐC482�× � �~�\� for
all � by carefully accounting for the occurrences of item with index
id � .
Leave-1-out. The leave-1-out and the q -fold estimators are the
same. This estimator can be efficiently computed from the sample
counts of items. Consider a sample and let � [ �<� f �<�_· ÈVÈVÈ be
the sampled counts of items. Let °8; � [ �K	 be the number of items
with frequency equal to �C; � [ . Let { ( °Y; � [ G:	¾�O{w�O� ) be the
number of such items in the sampled top- � set. The estimate isÓ � Ê<� � Z�[ �¼ 	q ½�ÚÛ Ù #Ü �WÝ Z�[ �C�gÞ9ßCà �  h�¼ {Âh:	°/; � [ hw	 ½ Ù #Ü �WÝ Z*[ Ì �gÞ8ßià �  �áâ U
The first terms account for the contribution of items that definitely
remain in the modified top- � set after “loosing” the leave-out sam-
ple. This includes all items that their count in the sample is larger
than �_; � [ h0	 . The second term accounts for items that are “par-
tially” in the top- � set after loosing the leave-out sample. By par-
tially we mean that there are more items with that frequency than
spots for them in the new top- � set. The hypothesis testing liter-
ature indicates that leave-1-out cross validation performs well but

has the disadvantage of being computationally intensive. In our set-
ting, the computation of the estimator is immediate from the sam-
pled frequencies. This estimator has a maximal size learning set,
of size qJG0	 , and therefore its expectation is closest to the top- �
weight among all the cross validation estimators.

6.4 Bounding the variance.
The choice of the particular cross validation estimator, selecting­
for the

­
-fold estimators or ¸oÐ for the leave-out estimators re-

flects the following tradeoffs. The expectation of these estimators
is the expectation of the actual weight of the sampled top- � set in
a sample of the size of the learning set. This expectation is non-
decreasing with the number of samples and gets closer to + ; 
��=�
with more samples in the learning set. (Moreover, the distribu-
tion of the sampled top- � weight with fewer samples dominates
that taken with more samples). Therefore, it is beneficial to use
larger learning sets. (larger

­
or smaller ¸ Ð ). In the extreme, the

leave-1-out estimator is the one that maximizes the expectation of
the estimator. However, smaller size test sets and dependencies be-
tween learning sets can increase the variance of the estimator. The
effect of that on the derived lower bound depends on both the ac-
tual variance and on how tightly we can bound this variance. In our
evaluation, we consider both the empirical performance of these
estimators and the rigorous confidence intervals we can derive for
them.

As we did with the 2-fold estimator, we can apply proportion
lower bounds to the cross validation estimators as follows: We can
treat the estimate as a Binomial random variable with ¸ Ð (or qgj ­ )
independent samples. This computation is pessimistic from two
reasons. The first is the application of a proportion bound to a bi-
ased quantity. The second reason is that the calculation assumes
a binomial distribution with qgj ­ independent trials, and therefore
does not account for the benefit of the cross validation averaging
over multiple test sets. These effect worsens for larger values of

­
.

In the experimental evaluation, we consider both the empirical per-
formance of the estimators (in terms of expectation and the average
squared and absolute error), and the quality of the confidence in-
tervals. For confidence intervals, we use two approaches to derive
lower bounds: The first is the pessimistic rigorous approach. The
second is a heuristic that “treats” the estimate as a binomial withq independent trials and applies a proportion

e 
3qWÓ Ô 48qT4/�T� lower
bound. We refer to this heuristic as r-fold with s and carefully eval-
uate its empirical correctness.

6.5 Weight difference to the top-k weight
We next consider the goal of obtaining a 
L	TGM�T� -confidence upper

bound on the difference + ; 
��=��G��'
�� ; � Ð � between the weight of
our output set �g; � Ð to that of the true top- � set.

A more refined question is “by how much can we possibly in-
crease the weight of our set by exchanging items from �@; � Ð with
items that are in �]×x�g; � Ð ?” It is a different question than bounding
the weight of the set. For example, in some cases we can say that
“we are 95% certain that our set is the (exact) top- � set.” which
is something we can not conclude from confidence bounds on the
weight.

We use the basic split-sample validation approach, where the
top- � candidate set, �@; � Ð , is derived from the learning sample 2 Ð .
The testing sample 2 µ is then used to bound the amount by which
we can increase the weight of the set �g; � Ð by exchanging a set of
items from �g; � Ð with a set of items of the same cardinality from�P×&� ; � Ð .Denote by �  �-(  
32 µ 4/�P×��W; � Ð � ( 	�D:�&Dw� ) the sampled top- �
items in �J×&� ; � Ð using samples 2 µ . Denote by ã ¶ �0) ¶ 
32 µ 4/� ; � Ð �



the sampled bottom-1 items in �g; � Ð using samples 2 µ . Let } ¶ Ê}p
���
32 µ 49� ¶ �94/¸ µ 4L�'
32 µ 4Yã ¶ �94/¸ µ 4Y�%� ( } ¶ is a 
L	�Gd�%� -confidence
upper bound on the difference of two proportions (see Section 2)
applied to ��
32 µ 48� ¶ � and �'
32 µ 48ã ¶ � with sample size ¸ µ .)

LEMMA 6.6. ���@� [/ä ¶ ä ;�} ¶ is a 
L	\GM�%� -confidence upper bound
on the amount by which we can increase the weight of the set �@; � Ðby exchanging items. (Hence, it is also a 
L	�G��%� -confidence upper
bound on the difference +<;¤
��=�5GS��
��g; � Ð � .)

PROOF. The maximal amount by which we can increase the
weight of �g; � Ð by exchanging items is equal to���@�[/ä ¶ ä ; + ¶ 
��P×&�g; � Ð ��G^+ ¶ 
��g; � Ð ��U
It follows that if } ¶ is a 
L	�G��T� -confidence upper bound on the dif-
ference + ¶ 
���×�� ; � Ð �¤GÂ+ ¶ 
�� ; � Ð � , then ���@� [/ä ¶ ä ; } ¶ is a 
L	QGE�T� -
confidence upper bound on the maximum increase (and therefore
on the difference +O;=
��=��GS�'
��W; � Ð � .)It remains to show that } ¶ is a 
L	MGN�T� -confidence upper bound
on + ¶ 
���×p�g; � Ð �JGz+ ¶ 
��g; � Ð � . We use the samples 2 µ to ob-
tain upper bound on the weight of the top- � elements in �E×J� ; � Ðand lower bound on the weight of the bottom- � elements in �@; � Ð .By definition, ��
#ã ¶ ���³+ ¶ 
�� ; � Ð � , and therefore ��
32 µ 4Yã ¶ ���+ ¶ 
32 µ 4/�g; � Ð � is a sample from a proportion that is at least + ¶ 
��g; � Ð � .
Similarly, ��
��  ��D + ¶ 
��Â×��g; � Ð � , and therefore ��
32 µ 49�  � is a
sample from a proportion that is at most + ¶ 
���×��g; � Ð � . There-
fore, } ¶ is also a 
L	7G¥�T� -confidence upper bound on the difference+ ¶ 
��]×x�g; � Ð �5GN+ ¶ 
��W; � Ð � .
7. EVALUATION RESULTS

The algorithms were evaluated on all data sets, for top-100 and
top-1, and ���-�=UÆ	 and �J�!�¤U �=	 . In the evaluation we consider the
tightness of the estimates and confidence intervals. For the heuristic­
-fold with q lower bounds we also consider correctness.

7.1 Quality of different estimators
We empirically evaluate the expectation, square error, and av-

erage absolute error of the (positively biased) sampled weight of
the sample top- � items (“upper”), and the negatively-biased split-
sample, 2-fold, 10-fold, and q -fold estimators. We also consider
two combined estimators: the average of the upper and the q -fold
estimators ( q -fold h upper) and the average of the upper and thek -fold estimators ( k -fold h upper). The expectation of these esti-
mators shows their bias, the square and absolute error reflect both
the bias and the variance of these estimators. The results for four
datasets are shown in Figure 4. The average square error and the
average absolute error had close correspondence. We show the av-
erage absolute value of the relative error. The figures show that the
bias decreases with

­
for the

­
-fold estimators. The split sample and

the 2-fold estimators have the same expectation and therefore split
sample averages are not shown. The absolute error and variance
measures vary: k -fold is always at least as good as split-sample
and on some datasets have considerably smaller variance. In most
cases, the q -fold and 	W� -fold estimators have smaller variance than
the k -fold estimator. The upper estimator is more often worse or
comparable to the q -fold estimator. The combined estimators per-
form very well. In most cases they had the smallest error and bias.

7.2 Confidence intervals
We evaluate the tightness of confidence bounds obtained via rig-

orous methods by considering the average value of the bound over
many runs. The upper and lower bounds provided are 
L	'G-�T� -
confidence bound. The five lower bound methods that are com-
pared are the Naive bound, the CUB bound, the split-sample and

2-fold bounds (with qgjTk proportion correction), and the 10-fold
bound (with qgj6	W� proportion correction). The split-sample bound
has the same expectation as the 2-fold bound, and therefore it is not
shown in the plots.

We precomputed, using multiple simulation runs, tables for the
L	�G0�%� -confidence bounds c'
3qmrs 48qT4/�T� , e 
3qmrs 48qT4/�T� (for propor-
tions), and

e ;_
 r��qT48qT4/�T� (for the Naive lower bound). The bound
for the Naive lower bound was generated using a simulations on
families of most dominant distributions. The proportion bounds
were used to derive the upper bound, and the lower bound for the
split-sample and for the 2-fold methods. The

e ; 
 r��qT48qT4/�%� tables
were used for the Naive lower bound. The precomputation of these
tables made the implementation of the Naive method very efficient.
The implementation of the CUB method involved constructing and
running simulations on families of most-dominant distributions on
each run of the algorithms. For the CUB method, these families de-
pend on the cumulative upper bounds obtained, and we could not
use precomputed tables. As a result, the CUB method is consider-
ably more computation intensive.

We evaluate two varieties of the CUB bounds. The first one
(CUB) derives �  only for ( �,��� ) by bounding only multiplicative
error for �M�0� ; with this method we use � [ ��UVUVUC�O�J; Z*[ ��	 .
The second one (CUB h ) also bounds the additive error and obtains�  for 	oDF��DÑ�¾G-	 . For a given confidence level, the bounds�  obtained by CUB h are tighter for ( �,��� ) but weaker for �,�w�
than the bounds obtained by CUB. There is a difference between
CUB and CUB h only for � � 	 .

The results for selected datasets and parameters ( � and � ) are
provided in Figure 5. The figures also show the top- � weight + ; 
��=� ,
the sampled weight of the sampled top- � weight (that has expecta-
tion at least +<;¤
��=� and gets closer to +<;_
��=� as the number of
samples grows) the actual weight of the sampled top- � set (that has
expectation at most +O;=
��=� and also gets closer to +z;¤
��=� as the
number of samples grows).

The Naive lower bound is almost always the lowest (least tight)
bound and is outperformed by the CUB and 2-fold bounds. The 10-
fold bound is sometimes below Naive, because of the pessimisticqgj¤	V� trials proportion adjustment. In some cases, the Naive bound
was tighter than the 2-fold bound. This can happen on distributions
that are closer to the “most dominant distributions” on which the
Naive bound is tight and the 2-fold method, that utilizes half the
samples, is not. On our datasets, we observed that Naive is tighter
in distributions where the top-k weight is most of the total weight.
The CUB bound was tighter than the 2-fold bound on more dis-
tributions, but there were also many distributions where the 2-fold
bound was tighter. The CUB h bounds were slightly tighter than
the CUB bounds.

Observed error-rates for top- � weight. We considered the
observed error rates of the 
L	iG��T� -confidence upper bounds and the
L	�G-�%� -confidence lower bounds obtained via rigorous methods
(Naive, CUB, 2-fold with qgjTk correction and 10-fold with qgj¤	V�
correction). The observed error rate is the fraction of runs on which
the lower bound was higher (or the upper bound was lower) than
the top- � weight. Tables 1, 2, and 3 show the error rates for the
upper bound and Naive and CUB lower bounds. The results are
aggregated across different numbers of samples, for each dataset
and � . The expectation of this error rate is lower than � and on most
instances (an instance is specified by the dataset, � , � , method, and
number of samples), the error rate was well below � . This was the
case since these bounds are pessimistic.



dataset, � �J�-�=UÆ	 ���-�¤U �¤	
dec64 1 0.101 0.005
dec64 100 0.005 0
destport 1 0.084 0.002
destport 100 0 0
destIP 1 0 0
destIP 100 0 0
lbl100 1 0.11 0.012
lbl100 100 0.008 0
srcport 1 0.101 0.006
srcport 100 0.016 0
srcIP 1 0.077 0.002
srcIP 100 0 0
worldcup 1 0.05 0.001
worldcup 100 0.008 0

Table 1: Observed error rate of 
L	nGF�T� -confidence upper
bound.

dataset, � �J�-�=UÆ	 ���-�=U �=	
weight set weight set

dec64 1 0.003 0.003 0 0
dec64 100 0 0 0 0
destport 1 0.001 0.002 0 0
destport 100 0 0 0 0
destIP 1 0 0 0 0
destIP 100 0 0.001 0 0
lbl100 1 0.003 0.003 0 0
lbl100 100 0 0 0 0
srcport 1 0.024 0.024 0 0
srcport 100 0 0 0 0
srcIP 1 0.001 0.001 0 0
srcIP 100 0 0 0 0
worldcup 1 0 0.004 0 0
worldcup 100 0 0 0 0

Table 2: Observed error rate of the 
L	�Gd�%� -confidence Naive
lower bound on top- � weight and top- � set.

dataset, � ���-�=UÆ	 ���-�=U �=	
weight set weight set

dec64 1 0.018 0.018 0 0
dec64 100 0 0 0 0
destport 1 0.022 0.022 0.001 0.002
destport 100 0 0 0 0
destIP 1 0.005 0.089 0 0.033
destIP 100 0 0 0 0
lbl100 1 0.025 0.025 0.002 0.002
lbl100 100 0 0 0 0
srcport 1 0.041 0.041 0.005 0.005
srcport 100 0.001 0.017 0 0.001
srcIP 1 0.036 0.038 0.002 0.002
srcIP 100 0 0 0 0
worldcup 1 0.007 0.011 0.002 0.004
worldcup 100 0 0 0 0

Table 3: Observed error rate of the 
L	�G:�T� -confidence CUB
lower bound on top- � weight and top- � set.

dataset, � split-sample 2-fold���-�¤UÇ	 ���-�=U �=	 ���-�=UÆ	 �J�!�¤U �=	
dec64 1 0.108 0.004 0.034 0
dec64 100 0 0 0.002 0
destport 1 0.079 0.003 0.029 0
destport 100 0 0 0.004 0
destIP 1 0.017 0.001 0.031 0
destIP 100 0 0 0.006 0
lbl100 1 0.107 0.003 0.034 0
lbl100 100 0.006 0 0.003 0
srcport 1 0.121 0.008 0.035 0
srcport 100 0.004 0 0.002 0
srcIP 1 0.091 0 0.037 0
srcIP 100 0 0 0.001 0
worldcup 1 0.064 0.001 0.041 0
worldcup 100 0.007 0 0.006 0

Table 4: Observed error rates of the 
L	JGd�T� -confidence split-
sample and 2-fold lower bounds on top- � weight.

Observed error-rates for top- � set. We also considered the
error rates of the 
L	EG-�T� -confidence lower bounds with respect
to the “top- � set” metric, that is the fraction of runs on which the
actual weight of the top- � set in the sample is below the respec-
tive lower bound. The actual weight of the top- � set in the sample
is always below the top- � set. Therefore, the observed error rate
should be higher than for the “top- � weight” metric. Tables 2 and 3
list the observed error rates for the Naive and CUB lower bounds.
The results are aggregated across different numbers of samples, for
each dataset and �E�<	T4W	V�T� . We observed that across all instances,
the error rates were consistent with the respective lower bounds,
that is, the error rate was below � or otherwise close to � within
the applicable standard error. These observations support Conjec-
ture 6.2 and its CUB variant and further suggest that a counterpart
of this conjecture may also hold to the

­
-fold lower bounds. The

conjecture, which we proved only for the Naive and CUB bounds
for �N�³	 , states than the lower bounds on the top- � weight also
apply for the top- � set.

Observed error-rates for split-sample and 2-fold. We
compared the observed error rates for the top- � weight of the 
L	MG�T� -confidence lower bounds obtained via the split-sample and the
2-fold methods. Recall that both estimators have the expectation
(and therefore the same bias). We expected the 2-fold method to
have lower variance and the observed error rates highly support this
expectation: For �¾�Ñ�¤UÆ	 , the average error rate over split-sample
instances was �¤U �@ÎTÎ and was only �=U �=	Wv over k -fold instances. For���²�=U �=	 , the respective error rates were �=U �\�=	Wå and k6U æ\ç'G��%v .
A more detailed summary is provided in Table 4 (error rates are
aggregated across different numbers of samples for each dataset
and � ).

Heuristic cross validation bounds. We evaluated the ob-
served error rates of the heuristic cross validation lower bounds

­
-

fold with q . The observed error rates for q -fold with q are listed in
Table 5 (aggregated across all numbers of samples, for each dataset
and �N�³	T4W	V�T� ). On the majority of instances, the error rate did
not exceed the corresponding � value. For the top- � set version, the
bounds were often too loose. Since the heuristic lower bounds are
tighter than with the rigorous methods, the results suggest that this
might be a reasonable heuristic for top- � weight, but not for top- �
set. The empirically good performance of the 	W� -fold and q -fold



dataset, � ���-�=UÆ	 ���-�=U �=	
weight set weight set

dec64 1 0.097 0.097 0.002 0.002
dec64 100 0.006 0.139 0 0.012
destport 1 0.082 0.087 0.002 0.003
destport 100 0.001 0.115 0 0.009
destIP 1 0.069 0.147 0.004 0.037
destIP 100 0 0.156 0 0.028
lbl100 1 0.102 0.102 0.001 0.001
lbl100 100 0.02 0.135 0 0.006
src4600 1 0.117 0.117 0.008 0.008
src4600 100 0.009 0.099 0 0.002
srcIP 1 0.102 0.104 0.003 0.003
srcIP 100 0.004 0.149 0 0.009
worldcup 1 0.089 0.146 0.004 0.014
worldcup 100 0.028 0.157 0 0.013

Table 5: Observed error rates of the 
L	PG^�T� -confidence q -fold
with q heuristic lower bound on top- � weight and top- � set.

estimators suggests that there might be a a way to derive tighter
rigorous bounds on their variance.

7.3 Bounding the difference to the top- � weight
We evaluated the method (Section 6.5) that directly bounds the

difference between the weight of the empirical top- � set to the
weight of the best alternative set of size � . We used the Normal
approximation to bound the differences of proportions (see Sec-
tion 2.2).

If we attempt to derive such bounds using methods that provide
a confidence interval, we can use the width of the confidence inter-
val, that is, the difference between the upper and the lower bounds.
If we use 
L	�GH�T� -confidence bounds for the upper and the lower
bounds, the confidence level we can provide on the difference is�5h�
L	�G��T�~��è!k@� .1 Figure 6 shows the average width of this inter-
val for the Naive bound, the CUB bound, and the 2-fold bound with���!�¤U k and ���-�¤U �Tk . It also shows the bound that is derived using
the direct method for confidence levels �J�-�=U k and ���-�=U �Tk .

The direct bounds are not always tighter than the derived 2-fold,
CUB, and Naive bounds, but on many instances are significantly
tighter. The bounds obtained as the width of the confidence inter-
vals are always positive whereas the direct method can sometimes
provide a negative bound on the difference. The interpretation of a
negative bound is that we are 
L	mGÂ�T� -confident that replacing items
from our set with the heaviest items that are not in our set will de-
crease the weight of the set by at least this amount. In particular,
the direct method enables us to derive confidence interval for our
set being the exact unique top- � set.

8. CONCLUSION AND FUTURE DIRECTIONS
We developed several rigorous methods to derive confidence in-

tervals for approximate top- � weight and top- � set queries over
a sample of the dataset. We also propose and evaluate different
estimators. Our work provides basic statistical tools for applica-
tions that provide only sampled data. The methods we developed
vary in the amount of computation required and in the tightness
of the bounds. Generally, methods that are able to uncover and ex-
1The validity of this depends on Conjecture 6.2 and its extension to
CUB and 2-fold lower bounds. These conjectures, that empirically
were correct on our datasets, state that the respective derived lower
bound applies not only to the top- � weight but also to the actual
weight of the sampled top- � set.

ploit more of the structure of the sample distribution provide tighter
bounds, but can also be more computationally intensive.

We plan to extend our methodology to applications where the
available storage is too limited to obtain the full sample distribu-
tion. An example is applications where the sampled records are
distributed in many locations or occur as a data stream. For these
applications, we need to asses what information to gather on the
sample distribution and to derive estimators and confidence inter-
vals that are based on partial information of the sample distribution.
In addition, we would like to consider a sequential settings where
the algorithm can adaptively increase the number of samples un-
til it can answer a query with specified precision and confidence
bounds.
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Figure 4: Average value (left) and corresponding average absolute error (right) of top- � estimators (averaged over 500 runs)
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Figure 5: 
L	MG��%� -confidence upper and lower bounds, by different methods, averaged over 500 runs
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Figure 6: Upper bound on the difference between the weight of our sampled top- � set to the weight of the best alternative set
(averaged over 500 runs)


