
Structure Prediction and Computation
of Sparse Matrix Products

Edith Cohen
AT&T Labs–Research
Murray Hill, NJ 07974

edith@research.att.com

Revised: May 18, 1997 (recompiled 2013)

Abstract

We consider1 the problem of predicting the nonzero structure of a product of two or more matrices.
Prior knowledge of the nonzero structure can be applied to optimize memory allocation and to determine
the optimal multiplication order for a chain product of sparse matrices. We adapt a recent algorithm
by the author and show that the essence of the nonzero structure and hence, a near-optimal order of
multiplications, can be determined in near-linear time in the number of nonzero entries, which is much
smaller than the time required for the multiplications. An experimental evaluation of the algorithm
demonstrates that it is practical for matrices of order 103 with 104 nonzeros (or larger). A relatively
small pre-computation results in a large time saved in the computation-intensive multiplication.

1 Introduction

Large sparse matrices occur in the solutions of many practical problems. Many matrix operations that are
computation intensive or infeasible on the full representation of the matrix become feasible when sparsity
is exploited. Indeed, extensive literature exists on more efficient storage schemes and algorithms for matrix
operations on sparse matrices. (See, e.g.,[12] [13] [6]). Since sparse matrices are easier to manipulate,
much effort was made on minimizing fill-in (nonzeros introduced during some computation) when there
is freedom in the choice of operations. (For example, minimizing fill-in in Gaussian eliminations.) It is
also common to represent matrices as products of sparser matrices. To exploit sparsity, it is of value to be
able to determine the nonzero structure of an output matrix of a matrix operation in advance (see Gilbert
and Ng [9] and Gilbert [10] for a survey). Many matrix computations have an initial phase that predicts the
nonzero structure of the output matrix, followed by the actual numerical computation. Prior knowledge of
the nonzero structure is used to improve memory allocation, data structure setup, and running time.

We consider the problem of determining the nonzero structure of products of sparse matrices. The in-
tention is to predict the structure using a low cost procedure, before performing the computation-intensive
matrix multiplication. The nonzero structure can serve as a guide for efficient memory allocation for the
output matrix when performing the actual multiplication. The MATLAB system, for example, utilizes such
predictions [8]. When the prediction is off (allocated size is too small) the system allocates another memory
block, larger by a constant factor, copies over columns of the product that were computed so far, and frees

1A preliminary version of these paper appeared in IPCO 96 conference [2]

1

the current block. Hence, good predictions on the product size are of value. Another application for pre-
diction of the nonzero structure is to determine the optimal order of multiplications (that is, the association
that minimizes the total number of operations) when computing a chain product of three or more matrices.
Consider the product A1 · · ·Ak of k ≥ 3 sparse matrices. The multiplication can be performed in many
orders. The number of operations can vary significantly for different orders. The nonzero structure is used
to determine the least-expensive order in which to perform the multiplications. For dense matrix multi-
plications, the optimal order is determined solely by the dimensions of the matrices, and can be obtained
efficiently by dynamic programming [14]. For sparse multiplication algorithms, however, the optimal order
varies significantly even for matrices of the same dimensions.

Throughout the paper we assume no cancellation. That is, the inner product of two vectors with over-
lapping nonzero entries never cancels to zero. This is a very common assumption in the mathematical
programming literature. The justification is that cancellations are unlikely when computing over real num-
bers. Furthermore, even when (due to a singular structure) cancellation occurs, rounding errors may prevent
the resulting computed value from being zero.

Even with the no cancellation assumption it is costly to determine the full nonzero structure (exact
locations of all nonzero entries) of a matrix product. This operation amounts to performing a boolean matrix
multiplication (transitive closure computation). Known boolean matrix multiplication algorithms require the
same number of operations to predict the structure as to perform the actual multiplication. (To be precise,
in practice each “operation” in a real matrix multiplication is a floating point multiply-add. These are much
more expensive than boolean and-or operations and hence it is still much cheaper to perform a boolean
multiplication. However, the cost of boolean sparse matrix multiplication still grows quadratically with the
average number of nonzeros in each row.)

We consider a relaxed goal of determining the number of nonzeros in each row and column of the
product. This partial knowledge is as valuable as the full structure for optimizing memory allocation, data
structure setup, and determining the optimal association for computing chain products. We introduce an
algorithm where each operation is a simple compare-store operation on small integers and also the number
of operations is linear in the number of nonzeros.

The obvious method of quickly estimating row and column densities in a matrix product assumes ran-
dom distributions of nonzero entries. This assumption, however, often does not hold in practice. The method
we propose, based on an adaptation of a recent reachability-set size estimation algorithm [1], obtains ac-
curate estimates for products of arbitrary matrices. We also provide better estimators and analysis. We
estimate the densities of all rows and columns of the product matrix in time linear in the number of nonzero
entries of the input matrices. We introduce an algorithm that for chain products of k > 3 matrices, proposes
a multiplication-order that (nearly) minimizes the number of operations. The algorithm combines the esti-
mation technique with dynamic programming and runs in O(kZ + k3N) time, where Z is the total number
of nonzeros in the input matrices and N is the maximum dimension (number of rows or columns) of an
input matrix.

We experimentally tested our method on products of 3 randomly-generated large sparse matrices. We
introduced correlations between nonzero locations that model patterns arising in “real” data. We also ex-
perimented with data obtained in a Text Retrieval application. For these matrices, there was a significant
difference in the costs of the two multiplication orders. For comparison, we also applied other estimation
methods that assume random nonzero distributions. Generally, these methods produced inferior estimates.
We concluded that even for matrices of dimension 103 with 2 × 104 nonzeros it is cost-effective to use our
algorithm prior to performing the multiplication. The number of operations performed by the estimation
routine was small in comparison to the gain obtained by selecting the less-costly association. The potential

2

savings are even larger for longer chain products and larger matrices.
In Section 2 we provide background material and review graph representation of matrices and sparse

matrix multiplication. In Section 3 we present estimation algorithms for number of nonzeros in rows and
columns of a product. In Section 4 we present algorithms for determining a near-optimal association for
computing a chain product. Section 5 contains experimental performance study. Section 6 contains a sum-
mary.

2 Preliminaries

Extensive literature exists on storage schemes and implementing matrix operations on sparse matrices (see,
e.g., [13, 16]). We review some relevant material. We denote by [A]i,j the entry at the ith row and jth column
of a matrix A, by [A]i· the ith row, by [A]·j the jth column, and by |A| the number of nonzero entries in the
matrix A. We use the term size of a column, a row, or a matrix to refer to the number of nonzero entries.

2.1 Graph representation of matrices and matrix-products

We represent a matrix A of dimension n1 × n2 by a bipartite graph GA, with n1 nodes {v1, . . . , vn1} at the
lower level and n2 nodes {v′1, . . . , v′n2

} at the upper level. For 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, there is a
directed edge from vi to v′j if and only if [A]ij 6= 0. It is easy to see that the outdegree of vi (resp., indegree
of v′j) is the size of the ith row (resp., jth column) of A.

We represent a product A = A1 · · ·Ak as a layered graph with (k + 1) layers as follows. Suppose Ai is
of dimensions ni × ni+1 (1 ≤ i ≤ k). For 1 ≤ i ≤ k, the ith layer has ni nodes and the edges between the
ith and the (i+ 1)st layers are as is the bipartite graph GAi .

For 1 ≤ r < r′ ≤ k, consider the subproduct B = ArAr+1 · · ·Ar′ . B is of dimension nr × nr′+1. The
following proposition is immediate.

Proposition 2.1. Assuming no cancellation

1. The number of nonzero entries in the ith row of B equals the number of nodes in layer r′ + 1 that the
ith node in layer r reaches via directed paths.

2. The number of nonzero entries in the ith column of B is equal to the number of nodes in layer r that
can reach the ith node in layer r′ + 1.

2.2 Storage schemes of sparse matrices

A good storage scheme that exploits sparsity should be both compact (memory usage of the order of the
number of nonzero entries) and facilitate an efficient computation of the applicable matrix operations. (See,
e.g. [13] for a comprehensive discussion and references.) The simplest representation is an array or a list of
all nonzero entries, where for each entry we store its contents and location. Common representations that
allow for efficient access to the content of specified rows or columns are the sparse row-wise and sparse
column-wise formats. The sparse row-wise representation consists of an array of indexes to the contents of
the rows of the matrix. Each row is stored as a linked list of the nonzero entries in the row. For each nonzero
in the row the list contains a record of the content and the column number. (Most sparse matrix computation
systems store a sparse row vector in a pair of matched arrays, one array for the nonzeros and the other for
respective column indices [7, 8].) A column-wise format is similar to row-wise when the roles of rows and
columns are reversed. For efficient implementation of sparse multiplication of two matrices AB it suffices

3

that either the matrix A is represented in column-wise format or B is in row-wise format. Our algorithm
for estimating column and row sizes of products of arbitrary matrices can be implemented efficiently even
when each matrix in the product is represented as an unsorted array of all nonzero locations. (Naturally, the
row-wise or column-wise formats are also suitable.)

2.3 Sparse matrix multiplication

Dense matrix multiplication algorithms perform near cubic number of operations in the dimension of the
matrices (a practical subcubic algorithm is [15], the best known but impractical bounds is given by [3]).
When the matrices have a relatively small number of nonzero entries, the sparsity can be exploited to sig-
nificantly reduce the amount of storage and running time. Consider the product of the matrices An1×n and
Bn×n2 . Every entry [AB]i1,i2 in the product is expressed as the sum of products

[AB]i1,i2 =
∑
i

[A]i1,i[B]i,i2 .

Sparse multiplication considers the product of [A]i1,i and [B]i,i2 only if both are nonzero. The total number
of such pairs and a good measure for the number of operations performed by a sparse multiplication of
(appropriately-represented) matrices is

n∑
i=1

|[A]·i||[B]i·| =
n∑
i=1

|{j|[A]ji 6= 0}||{k|[B]ik 6= 0}| . (1)

The sum over the columns of A (rows of B), of the products of the size of the ith column of A and the
size of the ith row of B. Hence, the cost of multiplying A = A1 · · ·Ai and B = B1 · · ·Bj can be deduced
from the number of nonzero entries in each column of A and each row of B. To see this recall that the
product of A and B can be expressed as the sum of n outer products: Sum, for 1 ≤ i ≤ n, the outer
product of the ith column of A and the ith row of B (see, e.g., [11]). For every nonzero entry [A]i1i2 ,
the sparse multiplication procedure computes its scalar product with every nonzero in the i2th row of B.
(Symmetrically, every nonzero of B is multiplied by all nonzeros in a corresponding column of A.) Hence,
for efficient implementation of sparse multiplication it is desirable to access in linear time in the size either
all nonzero elements of each column of A (have A in column-wise format) or access all nonzeros of each
row of B (have B in row-wise format). Sparse multiplication also necessitates a data structure for the output
matrix that allows for values to be added to arbitrary locations. A dense (O(n1n2) space) representation is
simple but not space and time efficient if the product matrix itself is not dense. Alternatively, a compact
row-wise or column-wise format for the product may increase access time (a common approach that does
not asymptotically increase time complexity is to use a dense representation only for the current “active”
row or column of the output matrix [7, 8].) Our experimental evaluation compares the cost of structure
prediction to the cost of multiplication (our structure prediction is effective when its cost is small with
respect to multiplication cost). We use Equation 1 (number of scalar multiply-adds performed by the sparse-
multiplication algorithm.) as a measure of the cost. The cost of multiplying large matrices in practice is
often dominated by the transfer of data between slow and fast memory. Hence, measuring the number of
operations, although common, is rather simplistic. To justify it, we note that the same memory management
procedures applied in the multiplication itself can also be carried out in our structure-prediction algorithms.
Furthermore, the structure prediction algorithm fetches the data once. The multiplication algorithm on the
other hand may require fetching the data many times. In light of this and the additional costs associated with
the data structure for the output matrix (discussion above), Equation 1 is an optimistic measure of the cost.
Therefore, the actual gap between the costs of structure prediction and multiplication is likely to be larger.

4

A

C

B

rows

columns

rows

columns

columns

rows

Figure 1: The layered graph of the product ABC

2.4 Example

Consider the following two nonzero structures (x denotes a nonzero entry).

T1 =

x x 0 0
x x 0 0
0 0 x x
0 0 x x

 T2 =

x 0 x 0
0 x 0 x
0 x x 0
x 0 0 x

Let B and C be matrices with nonzero structure in the form of T1. Let A have the structure of T2. The

goal is to compute the product ABC. See Figure 1 for the graph representation of the product. The product
ABC is evaluated using two matrix multiplications. There are two possible associations (orders of evalua-
tion), either (AB)C (where AB is the first multiplication) or A(BC) (where BC is the first multiplication).
All three matrices have the same column and row sizes (size 2). Hence, computing each of the products AB
or BC takes 16 operations. (The cost of AB is the sum of the products of the indegree and outdegree of each
node in the second layer and the cost of BC is the sum for nodes in the third layer.) Note, however, that the
product BC has the form T1 whereas AB has all entries nonzero. Hence, the multiplication A(BC) takes
16 operations but (AB)C takes 32 operations. Therefore, the evaluation order A(BC) requires 32 scalar
multiplication operations and (AB)C requires 48 operations. This example demonstrates that knowledge of
the row sizes of the product BC and the column sizes of AB is needed in order to determine the costs of the
second multiplications.

3 Estimating column sizes in a product matrix

The algorithm is based on a reachability-set size estimation algorithm [1]. The size estimation algorithm
in [1] produces estimates on the sizes of the reachability sets for all nodes in an arbitrary directed graph.
In the context of matrix products, we designate a subset of the nodes and estimate for all other nodes, the
number of ancestors or descendents they have from the designated set. We utilize the layered structure of
the matrix product graphs to obtain a simpler specialized algorithm.

Consider a matrix product A1 · · ·Ak represented as a k + 1 layer graph (as in Subsection 2.1). Let Ai

be of dimension ni × ni+1 (1 ≤ i ≤ k). For 1 ≤ i ≤ k + 1, denote by Vi the nodes in layer i. We

5

have |Vi| = ni. We use an adapted single application of the estimation algorithm of [1] to produce for each
1 < i ≤ k and each column of the product matrix A′i = A1 · · ·Ai, an estimate on the size of the column.
Each column of the product A′i corresponds to a node v ∈ Vi+1. The size of the column equals the number
of V1-nodes that can reach v. The size of each row in each of the subproducts Ai · · ·Ak (1 ≤ i < k) can be
estimated using a symmetric procedure.

The estimation algorithm gets as a parameter the number of rounds r. Both estimate quality and run-
ning time increase with r, and hence, it should be set according to the desired performance. We state a
column-size estimation algorithm. (The row-size estimation algorithm performs essentially a symmetric
computation on the graph with the layers in reverse order.) Each round amounts to first assigning inde-
pendent random numbers (keys) to all V1 nodes (the first layer). Following that, for all other nodes, the
least key of a V1 node that reaches them is determined. This is performed in time linear in the size of the
layered graph, by traversing the layers sequentially and propagating the smallest keys. The intuition, is that
for every node v ∈ Vi (i > 1), the distribution and the expected value of the key of the minimum-ranked
V1-node that reaches v depends solely on the number of V1 nodes that reach v. Each round provides a single
sample for every such node v. The estimation algorithm applies a “reversed” strategy to deduce the size
from the least-key samples. The accuracy and confidence of the estimate increase with the number of sam-
ples (rounds). Note that the rounds may be performed independently on a parallel platform. The algorithm
assumes in Step 2 that the matrices are represented in a column-wise format. That is, every node v ∈ Vi
has an associated list of its neighbors from layer Vi−1. An alternate statement for Step 2 that is suitable for
matrices represented as an arbitrary list of their nonzero entries is also provided.

3.1 Estimation algorithm for column-sizes

1. Assign for each node in V1 an r-vector that consists of random samples from the Exponential dis-
tribution with parameter λ = 1 (that is, density function f(x) = λe−λx and distribution function
F (x) = 1− e−λx.)

2. For layers i = 2, . . . , k + 1 do as follows:
• For each node v ∈ Vi:

Assign to v the r-vector that equals the coordinate-wise
minima of the r-vectors of all the Vi−1 neighbors of v.

3. At this point, every node in the graph has an r-vector associated with it. To estimate the number of
nonzeros of a column in A′j , apply an estimator to the r-vector of the corresponding node from layer
j + 1. For a vector (a1, . . . , ar) we apply the estimator

r − 1∑r
i=1 ai

(r − 1 divided by the sum of the coordinates.)

We remark that the analysis holds when we use an exponential distribution with 0 < λ 6= 1 in step 1,
and divide the estimator (step 3) by λ.

The algorithm above can be implemented efficiently when matrices are provided in column-wise format.
When the matrices are provided as unsorted lists of their nonzero locations (that is, for every i, we are
provided with a list of all edges between Vi and Vi+1 in arbitrary order), we replace Step 2 by the following
computation:

6

For layers i = 2, . . . , k + 1 do as follows:
• For each node v ∈ Vi initialize all entries in the r-vector of v to +∞:
• For each edge (v, u) where v ∈ Vi−1 and u ∈ Vi: (nonzero entry in Ai)

Assign to u the r-vector that equals the coordinate-wise minimum
of u’s current vector and the r-vector of v.

3.2 Time bounds

Obtaining the r-vectors requires rn1 random samples and r
∑k

i=1 |Ai| compare and store operations. Com-
puting each estimate amounts to r − 1 additions and a division. Hence, estimating the column sizes of all
submatrices A′i requires

∑k+1
i=2 ni divisions and (r − 1)

∑k+1
i=2 ni additions. The total number of operations

is dominated by the term r
∑k

i=1 |Ai|.

3.3 Accuracy and time tradeoffs

We analyze the quality of each estimate ẑ on the number of nonzeros z (in some row or column). Let the
r.v. M (z) be the minimum key for a (product) column (or row) of size z. M (z) distributes like the minimum
of z independent Exponential r.v.’s. The sum S(r,z) of r independent r.v.’s drawn from M (z) has density and
distribution functions

gr,z(x) = z
(zx)r−1

(r − 1)!
e−zx

Gr,z(x) = 1− e−zx
(

1 +
r−1∑
i=1

(zx)i

i!

)
,

for x ≥ 0 (see, e.g. [5]). We estimate z with the estimator ẑ = (r − 1)/S(r,z). Consider the r.v. y = ẑ/z.
The density and distribution functions of y are independent of z and are given by

fr(y) = − (r − 1)r

(r − 1)!yr+1
e
− r−1

y

Fr(y) = e
− (r−1)

y

(
1 +

r−1∑
i=1

(r − 1)i

yii!

)
for y ≥ 0. A plot of the distribution functions of y for r = {5, 10, 15, 20, 25} and of the confidence/accuracy
tradeoffs for r = {5, 10, 20, 30, 50, 100, 200} are provided in Figure 2. We obtain the following expressions
for the relative error

Prob{ẑ ≥ z(1 + ε)} = Prob{y ≥ (1 + ε)} = 1− e−
r−1
1+ε

(
1 +

r−1∑
i=1

(r − 1)i

(1 + ε)ii!

)

Prob{ẑ ≤ z(1− ε)} = Prob{y ≤ (1− ε)} = e−
r−1
1−ε

(
1 +

r−1∑
i=1

(r − 1)i

(1− ε)ii!

)

Hence,

Prob

{
|ẑ − z|
z

≥ ε
}

= 1− e−
r−1
1+ε

(
1 +

r−1∑
i=1

(r − 1)i

(1 + ε)ii!

)
+ e−

r−1
1−ε

(
1 +

r−1∑
i=1

(r − 1)i

(1− ε)ii!

)
.

7

0

0.5

1

1.5

2

0 1 2 3 4
acc

Dist. Func. for r={5,10,15,20,25}

0.5

0.6

0.7

0.8

0.9

1

conf.

0 0.1 0.2 0.3 0.4 0.5
eps

Confidence for n= 5,10,20,30,50,100,200

Distribution functions Confidence/Accuracy

Figure 2: Estimate quality vs. rounds

Further analysis (see the full version of [1]) establishes the asymptotic behavior

Prob

{
|z − ẑ|
z

≥ ε
}

= exp(−Ω(ε2r)) .

(The probability that an estimate is ε fraction off the true value decreases exponentially with rε2.) The bias
of the estimator ẑ is

E(y)− 1 =

∫ ∞
0

fr(y)

y
dy − 1 = 0 .

(The estimator is unbiased). The variance is

E((1− y)2) =

∫ ∞
0

(1− y)2fr(y)dy =
1

r − 2
.

The expected relative error is

E(|1− y|) =

∫ ∞
0
|1− y|fr(y)dy =

2(r − 1)(r−2)

(r − 2)!er−1
≈

√
2

π(r − 2)
.

(using Stirling’s formula.) The accuracy and confidence levels are guaranteed for each column, but are
correlated for different columns. The amount of correlation increases with the amount of overlap (locations
of nonzeros). Note that for any fixed ε > 0, a logarithmic number of rounds is sufficient to guarantee that
with a very high probability (at least (1− 1

poly)) all (polynomially many) estimates are ε-accurate.

3.4 Other estimation methods

We discuss simpler estimation algorithms that are based on the assumption that nonzero locations are ran-
domly and independently spread in rows and columns. We apply elementary probability theory consider-
ations. Later on, we compare the performance of these straightforward methods to the scheme suggested
above. Consider the matrix product AB, where A has dimensions n1 × n and B has dimensions n× n2.

8

Coarse estimates in O(1) time Suppose that nonzero locations in the matrices A and B are spread ran-
domly and are independent. (Essentially, the corresponding bipartite graphs are expanders.) Suppose A has
a nonzeros and B contains b nonzeros. When a� n1n and b� n2n (the matrices are sparse) the expected
size of the product AB is roughly ab/n. Since nonzero locations are spread randomly in AB as well, the
expected sizes of each row and column of AB are ab/(n1n) and ab/(n2n), respectively.

More refined estimates in O(n log n) time We make the following (weaker) assumption. Suppose that
sizes of rows of A and columns of B are arbitrary but positions of the nonzero entries in each row of A are
independent of the corresponding positions of the nonzero entries in the columns of B. That is, if the ith
row of A has r nonzeros and the jth column of B has r′ nonzeros. The probability that the ijth entry in the
product AB is nonzero is

pij ≡ Prob{[A]i,j 6= 0} = p(n, r, r′) = 1− (n− r)!(n− r′)!
(n− r − r′)!n!

.

Hence, the expected size of the jth column (resp., ith row) of the product AB is
∑

i pij (resp.,
∑

j pij).
The expected size is used as an estimate of the true size. Computing these estimates for all columns of
AB amounts to O(n1n2) evaluations of p(n, r, r′). for various values of r and r′. Moreover, evaluating
p(n, r, r′) are expensive operations. Hence, these suggested estimates are slower to compute than our more
accurate estimates presented above. We suggest the following relaxations. Firstly, the quantities p(n, r, r′)
can be approximated as

p(n, r, r′) ≈ min{1, rr
′

n
}

(at least in the ranges rr′ � n and rr′ � n.) Secondly, the sizes r1 ≤ · · · ≤ rn1 of the rows of A can be
sorted and grouped according to sizes. We maintain only the number of rows in each of the dlog1+ε n1e size
classes [(1 + ε)i, (1 + εi+1)]. Suppose there are si rows in the ith size class. We use the estimate∑

i

si min{1, r(1 + ε)i

n
} .

Note that this reduces the complexity of estimating all column sizes to O(n2ε
−1 log n).

Comparing estimates Later on, we experimentally compare these estimates to the ones produced by the
size estimation framework. The main advantage of these estimates is that they can be computed quickly. The
main disadvantages are: (i) Worse accuracy. (Even when the independence assumption holds, the estimation
error increases with the number of matrices in the product.) (ii) The independence assumption of nonzero
locations is not justified in many real instances. (In contrast, the size estimation framework is suitable for
products of arbitrary matrices.)

4 Near-optimal association for chain-products

We present algorithms that utilize column and row-size estimates to determine a near-optimal association
(order of multiplications) for evaluating a chain product (product of 3 or more matrices). The cost of mul-
tiplying two matrices A, B can be computed from the sizes cA of the columns of A and rB of the rows of
B and is given in Equation 1. These sizes are likely to be readily available with the representation of the
matrices. Consider computing a product ABC of three matrices. There are two possible orders to compute

9

the product. The first multiplication is either AB or BC. The second is either (AB)C or A(BC) accordingly.
The costs of the two possible first multiplications are cTArB and cTBrC (obtained using Equation 1). To
compute the costs of the two possible second multiplications, we use estimates ĉAB on the column sizes of
the matrix AB and r̂AB on the row sizes of the matrix BC. Our estimates for the cost of the second multi-
plication, ĉTABrC and cTAr̂BC, are obtained by applying Equation 1 to the estimated sizes. The algorithm
of Section 3 produces estimates for the column sizes of (AB) using r(|A|+ |B|) operations and for the row
sizes of (BC) using r(|B| + |C|) operations. An optimal order of multiplications (relative to the estimates)
is obtained by comparing the two quantities

cTArB + ĉTABrC and cTBrC + cTAr̂BC .

4.1 Algorithm for longer products

We present an algorithm that computes a near-optimal multiplication order for a chain product A1 · · ·Ak

of k > 3 matrices. For 1 ≤ i ≤ k, Ai has dimensions ni × ni+1. We apply a two-stage algorithm. The
first stage consists of using several applications of the algorithm of Section 3 to compute estimated column
and row sizes for all the subproducts. The second stage is a dynamic programming algorithm that utilizes
these estimates and produces an optimal order of multiplication with respect to these estimates. The use of
dynamic programming to optimally associate products of dense matrices (of varying dimensions) is standard
(see [4]). Our use of dynamic programming is similar, but is presented for the sake of completeness. We
elaborate on the two stages.

1. For j > i > 1 we produce estimates ci,j for the column sizes of each subproduct Ai · · ·Aj . For
i < j < k we produce estimates ri,j for the row sizes of each subproduct. (Note that the ĉ and r̂
notation was dropped.) These estimates are used in the dynamic programming stage and are obtained
as follows:
• For i = 1, . . . , k − 2:

Apply the column-size estimation algorithm (Section 3)
on the product Ai · · ·Ak−1.
This provides us with estimates ci,i+1, . . . , ci,k−1 of the column sizes of the
subproducts Ai · · ·Aj (for i < j ≤ k − 1).

• For i = 3, . . . , k:
Apply the row-size estimation algorithm (Section 3)
on the product A2 · · ·Ai.
This provides us with estimates r2,i, . . . , ri−i,i of the row sizes of the
subproducts Aj · · ·Ai (for 2 ≤ j < i).

For 1 ≤ i ≤ k, let ci,i (resp., ri,i) be the vector whose entries are the column (resp., row) sizes of the
matrix Ai.

2. We use dynamic programming to compute an optimal association with respect to the estimated row
and column sizes of the subproducts. The dynamic programming computation is performed in phases,
where the `th phase computes optimal multiplication order for all subproducts of size `. In the last
phase ` = k and the algorithms produces the optimal order for computing the whole product. For
1 ≤ i < j ≤ k denote by cost(i, j) the cost of computing the subproduct Ai · · ·Aj using the least-
cost ordering. The cost cost(i, j) is computed at the (j− i+ 1)st phase as the minimum of the (j− i)

10

quantities cost(i, h) + cost(h + 1, j) + cTi,hrh+1,j (i ≤ h < j). Note that these intermediary costs
are computed in previous phases. Finally, cost(1, k) is the cost of the least-cost order for computing
A1 · · ·Ak.

• For 1 ≤ i ≤ k, let cost(i, i)← 0.

• Compute the cost of all subproducts of size 2:
For i = 1, . . . , k − 1, let cost(i, i+ 1)← cTi,iri+1,i+1

(apply Equation 1 to the column sizes of Ai and the row sizes of Ai+1).

• For ` = 3, . . . , k: (compute costs of all subproducts of size `)
For i = 1, . . . , k − `+ 1: (compute cost of Ai · · ·Ai+`−1)

cost(i, i+ `− 1) = min
i≤h<i+`−1

(
cost(i, h) + cost(h+ 1, i+ `− 1) + cTi,hrh+1,i+`−1

)
.

4.2 Time bounds

The time bounds for the first stage follow from Subsection 3.2. For i = 1, . . . , k − 2, the algorithm of
subsection 3.1 is applied to estimate column sizes for all subproducts Ai · · ·Aj (i < j < k). This takes
O(r

∑k
p=i |Ap|) operations, where r is the number of rounds used in the estimation. Similarly, for 3 ≤ i ≤

k, computing estimates on the row sizes of all subproducts Aj · · ·Ai (1 < j < i) takes O(r
∑i

p=1 |Ap|)
operations. It follows that the number of operations (per round) performed in the first stage of the algorithm
is:

for k = 3 |A1|+ 2|A2|+ |A3|
for k ≥ 4 |A1|+ |Ak|+ k(|A2|+ |Ak−1|) + (k + 1)

∑k−2
i=3 |Ai|

The number of operation in the second stage (dynamic programming) is dominated by computing, for every
i1, i2, i3 such that 1 ≤ i1 ≤ i2 < i3 ≤ k, an estimate on the cost of multiplying the two subproducts
A′ = Ai1 · · ·Ai2 and A′′ = Ai2+1 · · ·Ai3 . This estimate is obtained by a dot product of the estimate vectors
(both of dimension ni2+1) on sizes of columns of A′ and rows of A′′ (takes ni2+1 operations). Hence, the
second stage requires

∑k
i=2 ni(i− 1)(k+ 1− i) operations. It follows that the asymptotic cost for r rounds

of the estimation method is

O(kr
k∑
i=1

|Ai|+ k3N)

where N = maxi ni is the maximum dimension of the matrices.

4.3 Accuracy

The algorithm computes an optimal multiplication order with respect to the estimated sizes of rows and
columns. Accuracy and running time increase with the number of rounds used. Hence, the number of
rounds should be set carefully such that time spent on selecting the order is small relatively to the time saved
by identifying a better order.

The cost estimate of multiplying two products A′,A′′ is the sum of products of estimates on column
sizes of A′ with respective row sizes of A′′. The estimates on sizes of columns of A′ and on rows of A′′ are
independent. The estimates on sizes of different columns of A′ (or rows of A′′), however, are not independent
and are skewed the same way for columns with similar patterns. The convergence of estimates is computed
analytically for estimates on individual column or row sizes. The convergence for multiplication cost and

11

near-optimal order estimates, however, depends on the structure of the matrices. Since estimates on column
and row sizes are unbiased, it is easy to see that the estimates on multiplication cost are unbiased. We note
that when r = O(ε−2 logN) rounds, then with very high probability ((1 − 1/ polyN)) all estimates used
have a relative error smaller than ε (ε-accurate). Hence, estimates computed by the dynamic programming
algorithm on the cost of multiplying two subproducts, are 2ε-accurate. (Therefore, the multiplication order
produced by the algorithm is within (1 + 2ε) of optimal.) A more careful analysis shows that estimates
on multiplication cost can in the worst case converge as estimates on sizes of single rows and columns
(see Subsection 3.3). The worst case occurs when many rows (or columns) in the appropriate subproduct
have similar nonzero patterns (and hence size estimates are biased the same way). Generally (not in dense
matrices or pathological worst-cases), our experiments confirm that relative errors tend to “cancel out” and
much fewer rounds are needed.

4.4 Dynamic programming with other estimates

Any estimation algorithm of sizes of columns and rows of subproducts can be substituted for the first stage.
In particular, the approaches described in Subsection 3.4 which assume independence on nonzero locations.
However, when there are no statistical guarantees on estimates on column and row sizes, the multiplication
cost estimates deteriorate even further for longer products.

5 Experimental evaluation

We tested our algorithm on products of 2 and 3 randomly generated square matrices of various patterns
and sizes and on products of Document-Term matrices that arise in Information Retrieval. We studied the
performance of our algorithm for the following two objectives.

1. There are 2 evaluation orders for the matrix product ABC: Either multiply (AB) first and then (AB)C,
or compute (BC) first and then A(BC). We estimate the costs of the two evaluation orders to deter-
mine the less costly one. We study the dependence of the accuracy of our estimates on the number of
rounds. We explored the effectiveness of the estimation procedure by comparing the cost of estimation
to the cost of multiplication and to the possible saving by selecting the less costly order.

2. We studied the distribution of the relative error of estimates on individual column and row sizes
of products of two matrices AB. The tradeoffs of accuracy and cost of obtaining the estimate are
evaluated. We conclude that the estimates obtained experimentally using pseudo random numbers
have the distribution predicted by the theory (Subsection 3.3). The cost of computing the product AB
dominates the cost of estimation as data size increases.

5.1 Computing and comparing costs

We denote by cost(A ∗ B) the cost according to Equation 1 (the number of floating-point multiply-add
operations), of a sparse multiplication of the two matrices A and B. Recall that Equation 1 is an “optimistic”
measure in the sense that it does not account for possible additional required computation. We measured
the cost of computing the two evaluation orders of ABC as follows. The costs cost(A ∗ B) and cost(B ∗ C)
are computed directly using Equation 1 from the sizes of rows of B and C sizes of columns of A and B
(provided with the representation of the matrices). We estimate cost(AB ∗ C) (multiplying (AB) by C)
and cost(A ∗ BC)) (multiplying (BC) by A) by estimating the column sizes of AB and row sizes of BC

12

and applying Equation 1. For comparison purposes, we compute cost(AB ∗ C) and cost(A ∗ BC) exactly
by performing a (time consuming) boolean matrix multiplication of the respective nonzero structures and
determining exact column and row sizes. The costs of the two evaluation orders are cost(A∗B)+cost(AB∗C)
and cost(B ∗ C) + cost(A ∗ BC). We used r rounds, for several values of r, to estimate cost(AB ∗ C) and
cost(A ∗ BC). The number of operations per round for estimating cost(AB ∗ C) (resp., cost(A ∗ BC)) is
|A|+ |B| (resp., |B|+ |C|). Each operation in the estimation procedure is a compare-store on numbers of size
at most O(logN), where N is the largest dimension of the matrices. The additional computation (obtaining
random samples and computing final estimates) is subsumed by the compare-store operations. Hence, the
total cost per round is cr = |A|+ 2|B|+ |C|.

We measure the effectiveness of multiplication-costs estimation by comparing its cost rcr to the cost
min{cost(A ∗ B) + cost(AB ∗ C), cost(B ∗ C) + cost(A ∗ BC)} of multiplication and to the gain |cost(A ∗
B) + cost(AB ∗C)− cost(B ∗C)− cost(A ∗ BC)| by selecting the less costly order. We note that on some
computing platforms, an “operation” of the multiplication algorithm is slower that an “operation” of the
estimation algorithm. (Modern workstations, however, pipe floating-point multiply-adds and can perform
one per clock-cycle.) The exact relation is platform-dependent. Our results support the use of the estimation
scheme even if the two units are comparable.

5.2 Generating the random test matrices

We selected the matrices A, B, and C randomly according to some patterns. To generate the matrix A we
used a small set of column densities (probability for an entry to be nonzero.). The matrix A is generated
column by column. To generate a column we first select a probability p uniformly at random from the set of
densities. Each entry in the column is determined to be zero or nonzero independently with probability p.
The matrices B and C are generated using a “block like” pattern that also introduces correlations between
the nonzero locations in B and C. Each column of C and each row of B were generated independently
according to the following procedure. A block-type that consists of a set of rows (resp., columns for C)
is selected uniformly at random from a set of block-types. Each block-type has two different probabilities
{pin, pout} associated with it. The probability pin (resp., pout) is the probability of an entry inside (resp.,
outside) the block is nonzero. Entries that are inside the block have higher probability of being nonzero
(pin > pout). In Table 1 we list the parameters used in each of 9 experiments: The dimension of the
matrices, the number and size of blocks, the probabilities to be inside and outside the block, and the set
of densities used for selecting the columns of matrix A. Figures 5 and 6 visualize the structures of all
subproducts of ABC in experiments E0 and E1. Figure 5 helps visualize the “block” patterns we used to
simulate correlations in matrices B and C. The patterns are not obvious in the larger matrices in Figure 6.

5.3 Results of experiments

We evaluated our method using 10 experiments on matrices of different sizes, density, and forms. In 9
experiments we used randomly generated matrices (E0, E1, F1–F7). We also experimented with matrices
that arise in Information Retrieval, where the matrix A relates a set of documents D1 and set of terms T1, B
is a relation between T1 and documents D2, and C relates D2 and T2. The product ABC relates D1 and T2.
The sets D1, D2, T1, and T2 had size (dimension of matrices) roughly 5000.

In Tables 2 and 3 we provide the data from a single execution of each experiment. In Table 2 we
list the number of nonzeros in each matrix and subproduct and the (easy to compute) multiplication costs
cost(A ∗ B) and cost(B ∗ C). In Table 3 we list the cost cr of a single round of the estimation algorithm,
the exact costs of the two multiplications cost(A ∗ BC) and cost(AB ∗ C), and the estimates to these costs

13

using r = {5, 10, 15, 20} rounds of the estimation algorithm. For comparison, we applied the two simple
estimation methods described in Subsection 3.4 (coarse and refined). The coarse estimates on column
and row sizes, when applied to multiplication costs, yield the estimate |A||B||C|n2n3

for both cost(AB ∗ C)
and cost(A ∗ BC). (Where A, B, and C have dimensions n1 × n2, n2 × n3, and n3 × n4, respectively.)
The refined multiplication costs estimates utilize the refined row and column size estimates as described in
Subsection 3.4. Another conceivable method to select a multiplication order is greedy, which selects the
order by the cheaper first multiplication. It is easy to see that greedy would not perform well on our data.

In experiments F1–F7, the number of operations required for a sufficiently good estimate of the multi-
plication costs is small compared to the gap

|(cost(A ∗ B) + cost(AB ∗ C))− (cost(B ∗ C) + cost(A ∗ BC))|

between the best and the lesser multiplication orders. The number of rounds needed for a sufficiently good
estimate decreases for larger matrices. For experiments F4–F7, only 5 rounds suffice.

The coarse estimate (obtained in O(1) time) provides an order-of-magnitude estimate to the multiplica-
tion cost, but have very limited accuracy. The refined estimate is reasonably accurate on the experiments
where the independence assumptions hold. The estimates are far off for experiment IR. For the other experi-
ments, recall that nonzeros in rows of matrix A are selected independently at random but the matrices B and
C are correlated. Hence, the refined estimates are more accurate for predicting the structure of AB than BC.

We studied the accuracy of the multiplication-cost estimates as a function of the number of rounds in
different experiments. Figures 7,8, 9, and 10 contain plots of the ratio of the estimated cost of multipli-
cation and the actual cost. It plots the dependence of this ratio on the number of rounds performed for
Experiments E0, E1, F3–F7. Each plot contains the accuracy curve for 10 repetitions of the experiment
with r = [2, . . . , 25] rounds. For each experiment we included the curves for both products (AB)C (cost
of multiplying the product AB by the matrix C) and A(BC) (cost of multiplying the matrix A by the prod-
uct BC). As expected, the accuracy of the multiplication-cost estimates increases with input size and for
a larger number of rounds. The cost of multiplication and the potential savings of selecting the less-costly
order grow much faster than input size (and the cost of estimating multiplication-costs).

5.4 Estimates of sizes of rows and columns

Prior knowledge of (approximate) sizes of the columns or rows in a matrix product can be used to optimize
memory and time usage by the multiplication procedure. For example, by allocating memory and setting up
data structures of appropriate sizes. We included here histograms that plot the distribution of the estimate
accuracies for various numbers of rounds. Figures 3 and 4 provide plots of the distribution functions
and histograms for the accuracy (ratio of estimate to the value estimated) of estimates on the column sizes
of the product AB in 10 repetitions of experiments F3 and F5. (Hence, the histograms contain 10, 000
and 50, 000 different estimates.). The histograms plot the accuracy distribution for r = {5, 10, 15, 20, 25}
rounds. Recall that the estimates are produced using r(|A|+ |B|) operations, (see Table 2). The close fit of
the histograms and the respective distribution functions establish that the pseudo random number generator
we used was sufficient. Observe that even for only 5 rounds, it is very unlikely that the estimate is over 3
times or below 0.4 times the actual value.

Table 4 lists the per-round operation counts of estimation, the operation count of multiplication, and the
ratios of the number of estimation operations (comparisons) to multiplication operations (multiply-adds) for
various numbers of rounds for the product AB in each of the experiments. The effectiveness of estimation
increases with the size of the data. In all of our experiments, the cost of multiplication dominated the cost
of estimation with 5 rounds.

14

0

500

1000

1500

2000

Nom

0 1 2 3 4
acc

Exp3: 10000 AB column size estimates r=5

0

500

1000

1500

2000

Nom

0 1 2 3 4
acc

Exp3: 10000 AB column size estimates r=10

0

500

1000

1500

2000

Nom

0 1 2 3 4
acc

Exp3: 10000 AB column size estimates r=15

5 rounds 10 rounds 15 rounds

0

500

1000

1500

2000

Nom

0 1 2 3 4
acc

Exp3: 10000 AB column size estimates r=20

0

500

1000

1500

2000

Nom

0 1 2 3 4
acc

Exp3: 10000 AB column size estimates r=25

20 rounds 25 rounds

Figure 3: Exp.F3:Histograms for accuracy of estimates on AB column sizes

5.5 Some implementation issues

5.5.1 Using thresholds

Our implementation was in C language, using the pseudo random number generator provided by the stan-
dard library. The estimation algorithm tracks the minimum elements in large sets of random keys. The
estimate is essentially the inverse of the average of r such minima. Hence, particularly for very small val-
ues of r, the estimate is sensitive to skews from a random distribution or to very small values. Moreover,
the variance of the estimator is not bounded for r = 2. Our experimental setting demonstrate that r ≥ 5
produced adequate estimates.

To decrease the standard deviation of the estimates for very small number of rounds, we applied a low-
threshold cutoff to the random keys. That is, values below the threshold were replaced by the threshold.
The threshold utilize the upper bound on the quantities estimated and rules out large overestimates. The
use of a threshold, however, introduces a bias (towards underestimation). We observed that the thresholds
indeed improved the estimate quality for r = {2, 3}. We suggest using a threshold of the order of 1 over the
maximum row or column-size expected in the product. In the absence of a good estimate for the latter, the
dimension (an obvious upper bound) can be used. (This increases the accuracy, but introduces a bias, in the
column/row size estimates).

We used a low threshold or no threshold for the multiplication cost estimates. Figures 8 and 9 contain
plots where the threshold is 1 over twice the dimension, that is, 1/2000 for Experiment F3, 1/10000 for Ex-
periments F4 and F5, and 1/20000 for Experiments F6, F7 and no threshold for Experiment IR. To visualize
the effects of a threshold, Figure 12 contains the accuracy/rounds tradeoffs for repetitions of experiment F3

with no threshold and with a high threshold 1/600. Figure 11 contains experiment IR with threshold 1/2000.
The behavior depicted there for Experiments F3 and IR is representative. As expected, the accuracy of the

15

0

2000

4000

6000

8000

10000

12000

No.

0 1 2 3 4
acc

Exp5:50,000 AB column size estimates r=5

0

2000

4000

6000

8000

10000

12000

No.

0 1 2 3 4
acc

Exp5:50,000 AB column size estimates r=10

0

2000

4000

6000

8000

10000

12000

No.

0 1 2 3 4
acc

Exp5:50,000 AB column size estimates r=15

5 rounds 10 rounds 15 rounds

0

2000

4000

6000

8000

10000

12000

No.

0 1 2 3 4
acc

Exp5:50,000 AB column size estimates r=20

0

2000

4000

6000

8000

10000

12000

Nom

0 1 2 3 4
acc

Exp5:50,000 AB column size estimates r=25

20 rounds 25 rounds

Figure 4: Exp.F5:Histograms for accuracy of estimates on AB column sizes

multiplication cost estimates for small number of rounds increases, the variance of the estimator decreases,
and a bias is introduced.

5.5.2 Representing the keys

It suffices to use a fixed small number of significant bits for representing the random keys (to be determined
according to the desired accuracy O(log ε−1). Note that for Exponential samples, the average size of the
exponent part is fixed. If a simple representation is used (no exponent) we need O(logN + log ε−1) bits.

5.5.3 Determining the number of rounds

For some applications it is desirable to determine the number of rounds online. The general guidelines are
to balance the cost of estimation by the potential savings of choosing a cheaper order of multiplications.
(The potential savings are the difference in the costs of the two possible orders.) For example, if after 5
rounds our estimate for the cost of one order is 50% higher than the other order, we may stop the estimation
procedure. On the other hand, if our estimates to the costs of the two orders are within 10% of each other
and we expect 10% accuracy we may choose to use more rounds (if the cost of using more rounds is small
with respect to the current gap between the two orders.)

6 Summary

Multiplications of sparse matrices arise often in practice, both as stand alone operations and as part of more
complex computation, such as solving linear programs. We considered predicting the nonzero structure of
a product of 2 or more sparse matrices as a preprocessing step prior to the multiplication. In particular, we

16

considered the prediction of the size (number of nonzero elements) of each columns and row of the product.
Prior knowledge of the nonzero structure may improve storage utilization and running time and could be
used to determine the least-costly order to multiply 3 or more sparse matrices.

We outlined and tested naive approaches that predict the structure assuming that nonzero entries are
spread randomly. This assumption is often not justified. We adapted a reachability-set size estimation
method [1] to produce accurate estimates of row and column sizes of arbitrary matrix products. These
enabled us to estimate the cost of multiplying two matrix products. Our estimation procedure runs in linear
time in the number of nonzero entries, which (asymptotically) is much smaller than the cost of computing
the matrix product.

We experimented with an implementation of the method on products of large sparse matrices. We used
matrices arising in Information Retrieval and random matrices. The random matrices were generated using
patterns which we believe reflects correlations arising in some real applications. We observed that the
estimation-cost is small relatively to the multiplication-cost even for relatively small matrices. We conclude
that the method is practical and can both aid in multiplying pairs of matrices and considerably reduce the
cost of computing chain-products of matrices.

Acknowledgement I would like to thank David Applegate, David Lewis, Fernando Pereira, and Mauricio
Resende for discussions and pointers to bibliography and applications, and to David Lewis for the IR data.
I am grateful to the anonymous referees for helpful comments and references.

References

[1] E. Cohen. Estimating the size of the transitive closure in linear time. In Proc. 35th IEEE Annual
Symposium on Foundations of Computer Science, pages 190–200. IEEE, 1994. full version submitted
to JCSS.

[2] E. Cohen. Optimizing multiplications of sparse matrices. In W. H. Cunningham, S. T. McCormick,
and M. Queyranne, editors, Proc. of the 5th International Conference on Integer Programming and
Combinatorial Optimization, pages 219–233. Springer-Verlag, Lecture Notes in Computer Science
Vol. 1084, 1996.

[3] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comput.,
9:251–280, 1990.

[4] T. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms. McGraw-Hill Book Co., New
York, 1990.

[5] W. Feller. An introduction to probability theory and its applications, volume 2. John Wiley & Sons,
New York, 1971.

[6] A. George, J. Gilbert, and J.W.H. Liu, editors. Graph theory and sparse matrix computation, volume 56
of The IMA volumes in Mathematics and its Applications. Springer-Verlag, 1993.

[7] A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-
Hall, 1981.

[8] J. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in Matlab: Design and implementation. SIAM
J. Matrix Anal. Appl., 13:333–356, 1992.

17

[9] J. Gilbert and E. G. NG. Predicting structure in nonsymmetric sparse matrix factorizations. In
A. George, J. Gilbert, and J.W.H. Liu, editors, Graph theory and sparse matrix computation The IMA
volumes in Mathematics and its Applications, volume 56, pages 107–140. Springer-Verlag, 1993.

[10] J. R. Gilbert. Predicting structure in sparse matrix computations. SIAM J. Matrix Anal. Appl., 15(1):62–
79, 1994.

[11] G. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins U. Press, Baltimore, MD, 1989.

[12] A. Jennings and J. J. McKeown. Matrix computations. John Wiley & Sons, New York, second edition,
1992.

[13] S. Pissanetzky. Sparse matrix technology. Academic Press, New York, 1984.

[14] R. Sedgewick. Algorithms. Addison-Wesley Publishing Co., Reading, MA, 1988.

[15] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 14(3):345–356, 1969.

[16] R. P. Tewarson. Sparse matrices. Academic Press, New York, 1973.

18

Exp. dimension # blocks block-size pin pout A densities
E0 256 8 15 0.8 0.02 {0.03}
E1 512 8 60 0.25 0.01 {0.02}
F1 1, 000 20 50 0.3 0.005 {0.0150.0350.0200.0100.020}
F2 1, 000 10 30 0.4 0.005 {0.0150.0030.0200.0100.020}
F3 1, 000 10 60 0.2 0.005 {0.01}
F4 5, 000 100 40 0.5 0.0015 {0.0040.0040.0050.0050.004}
F5 5, 000 50 60 0.4 0.001 {0.0040.0030.0050.0050.003}
F6 10, 000 100 60 0.4 0.001 {0.0020.0010.0030.0030.002}
F7 10, 000 500 20 0.7 0.001 {0.002}

Table 1: Parameter choices for the experiments

Exp. |A| |B| |C| |AB| |BC| |ABC| cost(A ∗ B) cost(B ∗ C)
E0 2, 042 4, 317 4, 242 23, 780 32, 489 63, 975 34, 325 111, 465
E1 5, 245 9, 906 10, 047 83, 937 98, 419 255, 678 101, 590 202, 547
F1 19, 377 19, 697 19, 700 316, 806 198, 822 971, 975 381, 391 388, 186
F2 13, 923 16, 753 16, 916 185, 205 218, 316 944, 800 233, 781 612, 263
F3 9, 948 16, 572 16, 800 147, 979 209, 317 866, 913 164, 809 369, 591
F4 110, 421 137, 176 137, 524 2, 830, 071 1, 946, 403 20, 254, 461 3, 028, 574 4, 276, 973
F5 100, 294 144, 729 144, 908 2, 669, 364 1, 773, 636 18, 678, 073 2, 900, 704 6, 117, 018
F6 219, 762 339, 549 339, 583 7, 099, 568 6, 589, 297 75, 692, 609 7, 458, 357 15, 343, 737
F7 199, 865 240, 035 240, 155 4, 685, 728 3, 929, 670 53, 909, 513 4, 799, 504 5, 760, 134
IR 82, 670 85, 793 85, 155 5, 787, 707 1, 174, 978 12, 305, 303 8, 870, 366 2, 412, 967

Table 2: Matrix sizes

Exp. cr (×103) cost: (×103) exact 5 rnds 10 rnds. 15 rnds. 20 rnds. coarse refined
E0 14.9 cost(AB ∗ C) 582 382 465 520 489 571 780

cost(A ∗ BC) 257 237 248 265 268 ” 491
E1 35.1 cost(AB ∗ C) 1, 709 1, 887 1, 613 1, 563 1, 652 1, 991 2, 075

cost(A ∗ BC) 1, 009 822 929 870 930 ” 1, 949
F1 78.5 cost(AB ∗ C) 6, 256 7, 937 6, 934 6, 321 6, 317 7, 519 7, 522

cost(A ∗ BC) 3, 860 5, 168 4, 163 4, 235 4, 246 ” 7, 513
F2 64.3 cost(AB ∗ C) 6, 456 7, 760 7, 416 6, 465 6, 647 3, 946 8, 484

cost(A ∗ BC) 3, 058 3, 956 3, 307 3, 345 3, 331 ” 3, 955
F3 59.9 cost(AB ∗ C) 3, 274 3, 963 3, 489 3, 288 3, 310 2, 789 3, 677

cost(A ∗ BC) 2, 084 2, 690 2, 222 2, 287 2, 286 ” 2, 769
F4 522.3 cost(AB ∗ C) 88, 001 93, 130 95, 477 88, 911 83, 709 83, 324 94, 453

cost(A ∗ BC) 42, 964 41, 033 40, 830 42, 984 42, 927 ” 83, 301
F5 534.7 cost(AB ∗ C) 112, 208 115, 820 121, 008 111, 493 105, 116 84, 136 122, 699

cost(A ∗ BC) 35, 510 33, 486 33, 106 35, 031 352, 821 ” 84, 068
F6 1, 238.4 cost(AB ∗ C) 319, 546 298, 115 306, 531 313, 904 322, 776 253, 396 337, 196

cost(A ∗ BC) 144, 820 141, 311 143, 162 143, 812 146, 296 ” 253, 271
F7 920.1 cost(AB ∗ C) 112, 476 106, 704 108, 683 112, 046 112, 839 115, 213 115, 125

cost(A ∗ BC) 78, 607 74, 261 76, 961 76, 949 78, 113 ” 115, 265
IR 339.4 cost(AB ∗ C) 127, 798 92, 766 110, 700 104, 433 116, 506 33, 203 39, 581

cost(A ∗ BC) 68, 892 45, 018 50, 595 58, 875 65, 785 ” 71, 851

Table 3: Estimation cost and results

19

Exp. mult. cost cost per rnd. 5 rnds 10 rnds. 15 rnds. 20 rnds.
cost(A ∗ B) |A|+ |B|

E0 34, 325 6, 359 0.93 1.85 2.78 3.71
E1 101, 590 15, 151 0.75 1.49 2.24 2.98
F1 381, 391 39, 074 0.51 1.02 1.54 2.05
F2 233, 781 30, 676 0.66 1.31 1.97 2.62
F3 164, 809 26, 520 0.80 1.61 2.41 3.22
F4 3, 028, 574 247, 597 0.41 0.82 1.23 1.64
F5 2, 900, 704 245, 023 0.42 0.84 1.27 1.69
F6 7, 458, 357 559, 311 0.37 0.75 1.12 1.50
F7 4, 799, 504 439, 900 0.46 0.92 1.37 1.83
IR 8, 870, 366 168, 463 0.09 0.19 0.28 0.38

Table 4: Column-size estimations costs as fractions of multiplication costs of AB

A B C

AB BC ABC

Figure 5: Visualization of matrices in experiment E0

20

A B C

AB BC ABC

Figure 6: Visualization of matrices in experiment E1

21

E
x
p
e
r
i
m
e
n
t
E0

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp E0: ABxC accuracy vs rounds

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp E0: AxBC accuracy vs rounds

E
x
p
e
r
i
m
e
n
t
E1

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp E1: ABxC accuracy vs rounds

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp E1: AxBC accuracy vs rounds

Cost of (AB)C Cost of A(BC)

Figure 7: Accuracy vs. Rounds for 10 repetitions of Exp. E0, E1

22

E
x
p
e
r
i
m
e
n
t
F3

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp3:ABxC accuracy vs rounds

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp3:AxBC accuracy vs rounds

E
x
p
e
r
i
m
e
n
t
F4

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp4:ABxC accuracy vs rounds

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp4:AxBC accuracy vs rounds

E
x
p
e
r
i
m
e
n
t
F5

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp5:ABxC accuracy vs rounds

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp5:AxBC accuracy vs rounds

Cost of (AB)C Cost of A(BC)

Figure 8: Accuracy vs. Rounds for 10 repetitions of Exp. F3,F4,F5

23

E
x
p
e
r
i
m
e
n
t
F6

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp6:ABxC accuracy vs rounds

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp6:AxBC accuracy vs rounds

E
x
p
e
r
i
m
e
n
t
F7

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp8:ABxC accuracy vs rounds

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp8:AxBC accuracy vs rounds

Cost of (AB)C Cost of A(BC)

Figure 9: Accuracy vs. Rounds for 10 repetitions of Exp. F6, F7

E
x
p
e
r
i
m
e
n
t
I
R

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

IRE5:ABxC accuracy vs. rounds

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

IRE5:AxBC accuracy vs. rounds

Cost of (AB)C Cost of A(BC)

Figure 10: Accuracy vs. Rounds for 10 repetitions of Exp. IR

24

E
x
p
e
r
i
m
e
n
t
I
R

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

IRE5+t:ABxC accuracy vs. rounds

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

IRE5+t:AxBC accuracy vs. rounds

Cost of (AB)C Cost of A(BC)

Figure 11: Accuracy vs. Rounds for 10 repetitions of Exp. IR with threshold 0.0005

T
h
r
e
s
h
0.
0
0
0
0

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp3.ub:ABxC accuracy vs rounds

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp3.ub:AxBC accuracy vs rounds

T
h
r
e
s
h
0.
0
0
1
7

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp3.ht:ABxC accuracy vs rounds

0

0.5

1

1.5

2

acc

0 5 10 15 20 25
r

Exp3.ht:AxBC accuracy vs rounds

Cost of (AB)C Cost of A(BC)

Figure 12: Accuracy vs. Rounds for 10 repetitions of Exp. F3 with thresholds {0, 1/600}

25

