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ABSTRACT
Packet classification, although extensively studied, is an evolving
problem. Growing and changing needs necessitate the use of larger
filters with more complex rules. The increased complexity and size
pose implementation challenges on current hardware solutions and
drive the development of software classifiers, in particular, decision-
tree based classifiers. Important performance measures for these
classifiers are time and memory due to required high throughput
and use of limited fast memory.

We analyze Tier 1 ISP data that includes filters and correspond-
ing traffic from over a hundred edge routers and thousands of inter-
faces. We provide a comprehensive view on packet classification in
an operational network and glean insights that help us design more
effective classification algorithms.

We propose and evaluate decision tree classifiers with common
branches. These classifiers have linear worst-case memory bounds
and require much less memory than standard decision tree classi-
fiers, but nonetheless, we show that on our data have similar av-
erage and worst-case time performance. We argue that common-
branches exploit structure that is present in real-life data sets.

We observe a strong Zipf-like pattern in the usage of rules in a
classifier, where a very small number of rules resolves the bulk of
traffic and most rules are essentially never used. Inspired by this ob-
servation, we propose traffic-aware classifiers that obtain superior
average-case and bounded worst-case performance. Good average-
case can boost performance of software classifiers that can be used
in small to medium sized routers and are also important for traffic
analysis and traffic engineering.

Categories and Subject Descriptors
C.2 [Communication Networks]: C.2.6 Internetworking;C.2.3 Net-
work Operations

General Terms
Algorithms,Design,Management,Performance,Security
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1. INTRODUCTION
Packet classification is extensively deployed at the core and the

edge of the Internet and is a well studied problem (e.g.[18, 24, 14,
15, 25, 11, 20, 16, 3, 2, 21]). Yet, it is still growing in importance
and evolving. Classifiers grow in size, complexity, and functional-
ity. New applications drive the development of richer filter specifi-
cations: Packet classifiers, traditionally used for basic security, are
now used for routing, rate control, and mapping packets to different
classes of service with Differentiated Services (Diffserv). Classi-
fiers also grow in size; a single ISP router may need to perform
filtering for multiple customers VPNs, each using its own set of
rules.

Cisco Access Control Lists (ACL) are the industry standard for
packet classification [19, 1]. Basic ACLs use only network ad-
dresses (source and destination), Extended ACLs operate on layer
4 information (ports, protocol, type of service, etc).

An ACL is an ordered list of rules (which we refer to as a filter),
each rule has conditions and action. The action of the filter on a
packet is that of the highest priority rule that applies to the packet.
Packet classification at high speed core routers is traditionally im-
plemented using special hardware called Trenary CAMs (TCAMs).
TCAMs evaluate all rules simultaneously and the hardware outputs
the lowest index match. TCAMs can handle the fast line speeds
required, but are also expensive, consume a lot of energy, and im-
poses limits on the size and flexibility of rule specifications (for ex-
ample, TCAMs do not support range tests very efficiently). For this
reason, considerable attention has recently been given to software-
based classification[18, 14, 15, 25, 11, 16, 3, 2, 21].

Classification algorithms have different tradeoffs between mem-
ory size and worst-case search time. Linear search through the
rules is a simple and memory efficient classifier, but the worst-
case search time grows linearly in the size of the filter. On the
other extreme, proposed fast but memory intensive algorithms in-
clude Crossproducting[24], bit-level parallelism[18] and RFC [14].
Decision-tree based classifiers were pioneered by Gupta and McK-
eown [15] and by Woo [25]. They currently seem to outperform
other approaches with superior memory versus time tradeoffs and
a simple evaluation procedure that can be pipelined [21].

Software classification is also important for traffic engineering
and planning, in a simulator testing the effects of certain classifier
on traffic before a particular classifier is implemented. ACLs are
used to map traffic to different classes of service for quality of ser-
vice (QoS) and rate control. The configuration of QoS is complex
and relies on a good understanding of the traffic patterns in the var-
ious router queues and interfaces. It is thus important to determine,
prior to deploying a proposed filter, if the available bandwidth for
each class is not exceeded.



Our contributions.
Our work is the first to use actual, comprehensive, filter and traf-
fic data from a large ISP (Previous work was based on handful of
filters with no corresponding traffic data). From this data we glean
insights that help us design better classification algorithms. We
evaluate our algorithms using the actual filter and traffic data, but
argue that the properties we exploited are likely to hold for larger
filters and more complex rules.

Decision trees with common branches
Decision-tree based classification algorithms use geometric cutting
to eliminate rules. Each interior (decision) node has an associated
test, and each leaf node contains a subset of the (original) rules.
Tests associated with internal node are applied to a packet, when a
leaf is reached, linear search is applied to the rules associated with
the leaf.

Decision-tree algorithms suffer from extensive use of wildcards
in the rules. Wildcards mean that many rules have domains that
don’t distinctly fall in a single child of each decision node and
rules get replicated in multiple children, requiring more memory.
We propose common-branches decision trees where rules that need
to be assigned to more than one child get handled separately. Thus,
common-branches trees have worst-case size that is linear in the
original list of rules (whereas size can grow exponentially for stan-
dard decision trees). A possible weakness of common-branches
is increased search times. We argue, however, using simple mod-
els, that even though significantly increased search times can occur
on contrived synthetic rule sets, common-branches decision trees
have small search times when a certain structure, that is typical to
real-life rule sets is present. This structure amounts to correlations
between wildcards and specified locations of different rules in the
filter.

On our data, common-branches trees were only a fraction larger
than the original list of rules and used considerably less memory
than standard decision trees. Worst-case and average-case search
times, however, were comparable. Therefore, common-branches
trees clearly outperformed standard trees.

Structure present in rule-sets was exploited by previously pro-
posed classifiers to obtain better tradeoffs between memory and
search times. The distinct advantages of common branches trees
are very efficient memory, and in particular, the first to offer a lin-
ear worst case bound with good search times; are able to exploit
rule-set structure implicitly and seamlessly whereas previous algo-
rithms explicitly considered the specified fields in each rule. More-
over, the evaluation procedure itself is very simple, resembling that
of standard decision trees: There is no need to maintain extra state
and it can be fully pipelined.

Traffic-aware classification algorithms
The tight working constraints of high speed core routers promoted
memory and worst-case time as the metrics of interest for IP rout-
ing [6, 5, 13, 23] and packet classification [18] algorithms. (IP
routing lookup is a subproblem of packet classification where clas-
sification is performed only on the destination address field and is
strictly prefix based – identifying the rule with the longest matching
prefix).

But alongside the traditional metrics of memory size and worst-
case time, packet classifiers in some settings can greatly benefit
from improved average-case time performance. Such settings in-
clude classifiers used in software simulations for planning and traf-
fic engineering purposes. With highly stable traffic patterns, clas-
sifiers with good average case performance are also applicable to
some online packet classification settings. IP route lookup algo-

rithms with good average-case performance were proposed and ar-
gued for [6, 17].

Our data reveals a strong Zipf-like pattern where few rules in
each filter are responsible to resolving most of the traffic. More-
over, it seems that the bulk of rules is almost never used (also on
short time scales). This suggests that traffic-aware algorithms can
greatly improve average search times. The evident stability in traf-
fic patterns also support the viability of average-case time algo-
rithms, that are susceptible to sudden shifts in traffic and surges.

We design classification algorithms that are geared towards good
average-time performance. We first consider linear search where
average time can be improved by reordering the rules in the filter.
We then construct decision trees (standard and common-branches)
that locally optimize average case time. We evaluate these algo-
rithms on actual filters and packet traffic and demonstrate that average-
case performance can be significantly improved over that of classi-
fication algorithms that are oblivious to traffic patterns.

We proceed with related work in Section 2, then present proper-
ties of our data in Section 3. The algorithms we use are presented
in Section 4. Section 5 uses simple models and properties of rule-
sets to motivate common branches decision trees. The performance
evaluation is presented in Section 6.

2. RELATED PRIORWORK
Decision tree classifiers are constructed top down in a locally-

optimal greedy manner. For each node, local optimization is used
to choose the best test to apply or to make the node a leaf.

A heuristic proposed in [15, 25] is to stop the splitting once a
node has less than some determined number of rules as a way to re-
duce memory size, this heuristic is applicable to common branches
decision trees as well, and will guarantee that the memory used
by the resulting classifier is no more than a fraction larger than
the size of the original list of rules. Another effective heuristic to
reduce memory is “pushing common rules upwards,” where rules
common to all descendent leaves are processed at the common an-
cestor [21] instead of being replicated in all children. This heuris-
tic is applicable to standard decision trees and we implemented it
in our constructions to obtain standard decision trees with smaller
memory.

Previous work used different tests at decision nodes. Gupta and
McKeown [15] introduced Hierarchical Cutting (HiCuts), where
the decision at each node is a range test on some field, and Woo [25]
used bit tests. Range cuts and bit tests have different advantages.
Range cuts work well on the port field (which is specified by ranges)
and the protocol field (specified by points). They are also appropri-
ate to address fields with prefix-based masks. Even though the vast
majority of address fields in rules are still specified using prefix
masks, Extended ACL specs allow for generally placed wildcards.
Bit tests can thus provide further flexibility. We used both range
and bit tests in our decision trees.

The structure present in real-life rule sets, of which fields are
constrained or wildcarded, was exploited by different classifica-
tion algorithms. Algorithms for basic ACLs took advantage of the
fact that often only one of the address fields is specified. One ap-
proach is to associate each rule with one of its specified fields; sep-
arately match a packet against the rules of each field; and combine
the results to find the minimum index matching rule overall [22].
Woo [25] proposed to use a different decision tree for each field.
This approach also allows the use of off the shelf existing IP route
lookup algorithms for the address fields [18, 11].

The extended grid of tries algorithm (EGT-PC) is motivated by
the observation that any given packet matches only a few rules,
even when only considering the source-destination prefixes spec-



action protocol src addr and mask dest addr and mask port
1 deny udp any 18.240.0.0 0.15.255.255 range snmp snmptrap
2 deny tcp any 18.240.0.0 0.15.255.255 range 161 162
3 permit icmp any any ttl-exceeded
4 permit icmp any any port-unreachable
5 deny ip any 18.240.0.0 0.3.255.255
6 deny ip any 18.250.0.0 0.1.255.255
7 deny ip any 18.254.0.0 0.0.7.255
8 deny ip any 18.255.0.0 0.0.15.255
9 permit ip 18.1.146.0 0. 0.1.255 any

10 permit ip 18.1.16.176 0.0.0.15 any
11 permit ip 18.247.13.192 0.0.0.3 any

Table 1: Example of an 11-rule filter

ified in the rules [2, 20]. These algorithms are not decision-tree
based and with multiple dimensions require memory for backtrack-
ing search.

IP Routing lookup algorithm with good average case performance
were considered by Cheung et al [6], which proposed a trie based
scheme that takes into account frequencies in which prefixes are ac-
cessed, and Gupta et al [17], which proposed a decision tree based
scheme with bounded worst-case and better average case perfor-
mance. These average-case algorithms are specifically designed for
the particular structure of prefix lookups, but their conclusions that
traffic patterns are stable over time and average performance can
be significantly improved by traffic-aware classifiers are consistent
with ours.

3. DATA
Our evaluation is based on comprehensive data collected from

a Tier 1 ISP. Packet classification is applied by edge routers to all
traffic entering the network.

3.1 Filters
The filters are defined in the router configuration files. The con-

figuration file of each router then associates each of the routers in-
terfaces with a named filter. Often the same filter is used for multi-
ple interfaces.

Each filter is specified in Extended ACL format as a list of rules.
Each rule is a conjunction on several fields. A packet matches the
rule if there is a match on all fields. Each rule has wildcarded bit
masks on the address (source and destination) fields; a protocol
specification (such as tcp, icmp, udp, or “ip” for all protocols) on
the protocol field; and a range of values (range, equal, not equal,
greater than, less than, or unconstrained) on the port field (Our data
had only destination port specified). For the ICMP protocol, the
destination port field specifies ICMP parameters. The rules also
contain additional specifications (like TCP flags or fragments). The
domain of a rule is defined as all packet values that match the rule.
Each rule also has an action: a binary permit or deny on our data,
but could also be more elaborate such as class of service. A packet
can match several rules in the filter. The action of the filter on a
packet is the action of the lowest-index rule (aka highest priority
rule) that matches the packet. There is a default action that applies
if none of the rules matches the packet. The default action is deny
for deny/permit filters. Thus, the order of the rules is important
for the semantics of the filter, which can change if rules with over-
lapping domains and different actions change their relative order.
Table 1 shows a format of an 11-rule filter used in our data.

3.2 Traffic
The bulk of traffic in the network is captured by (sampled) net-

flow. Packets are filtered by edge routers and permitted packets are
captured inside the network. Therefore, our flow records include
only packets that are permitted at the edge routers and we study
the performance of classification schemes with respect to permitted
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Figure 1: Distribution of filter size (weighted by respective
packet traffic). Shows total number of rules and number of
rules with a permit action.

traffic only. We feel it is justified as permitted packets constitute the
vast majority of packets.

Each sampled traffic record lists an associated ingress router (or
a subset of possible ones) that is derived using the applicable con-
figuration of the routing protocols. The methods used to derive
the ingress interface from a flow record is described in [12]. The
records have also been further sampled using size dependent sam-
pling [9]. We note that the data was sampled with respect to bytes
and we are interested in packets, but since number of packets and
number of bytes in a flow are related in a close to proportional man-
ner, it does not significantly influence our results.

The flow records were associated with over a hundred different
ingress routers, the majority of them access routers and the other
IGR (Internet Gateway Routers). Routers had between 1 to 175
interfaces. All together, there were close to 3600 interfaces that had
packet data. There were about 3000 filter definitions (some filters
are associated with several interfaces of the same router). 458 of
the interfaces had at least 2000 daily records from sampled netflow,
and we used these for our traffic-aware evaluation. These interfaces
with at least 2000 daily records handled 99.4% of traffic. The filters
associated with these interfaces contained up to 220 rules. (since
we used interfaces with at least 2000 flow records, it follows from
[9] that our standard error is at most 2%).

Figure 1 shows the distribution of filter sizes (the size of the filter
is the number of rules), weighted by the packet traffic that passes
through interfaces to which the filter is assigned. The figure shows
the distribution for both the total number of rules in the filter and
for the number of rules with a permit action.

Our performance results are aggregated over the following sets
of interfaces:

: All interfaces with at least 2000 (sampled netflow)
daily flow records.

: A subset of ALL that only includes interfaces with
filters containing at least 60 rules (5.6% of traffic
went through these interfaces.)

: A subset of ALL (and of AL60 ) that only in-
cludes interfaces with filters containing at least 100 rules.
(1.1% of traffic went through these interfaces.)

: The set of all filters defined in the router configura-
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Figure 2: Distribution of rule usages, fraction of packets re-
solved by the th heaviest rule. For ALL interfaces and broken
down for interfaces with filters containing at least 10, 40, or
80 permit rules (these filters were applied to , , and

of traffic, respectively).

tion files with at least 200 rules. We obtained 78 such filters,
including some filters with 1-2 thousand rules and filters that
were not currently associated with any interface.

When aggregating results across , , and
sets, each interface is weighted by the amount of daily packet traf-
fic that passed through it. Since AL60 and AL100 interfaces
capture only a fraction of traffic, focusing on them allows us to see
dependence of our results on filter size.

Since most filters have insufficient or no traffic data,
when aggregating results we use a uniform weight for each fil-
ter. For filters we only evaluated the “static” performance
metrics (memory and worst-case time) of different classification
schemes.

We next consider the usage of rules in each interface. A rule is
considered to resolve a packet if it is the highest priority rule that
matches the packet; The th heaviest rule is the rule that resolves
the th largest number of packets among all the rules in the filter.
Figure 2 reveals a Zipf-like usage pattern of rules.1

The results are aggregated for ALL interfaces, but also are bro-
ken down according to the number of rules with a “permit” action
in the filter (filters containing at least 10, 40, or 80 permit rules).2
Since our traffic data includes only permitted traffic, this break-
down addresses a concern that filters with a larger number of total
rules and few permit rules will artificially bias the rule-usage re-
sults. We observe that the Zipf-like pattern prevails for filters with
a large number of permit rules: Even for filters with 80 or more
permit rules, 45% of packets are resolved by the heaviest rule.

3.3 Rule Structure
We examined filters and rules according to which fields (among

the 4 main fields: source IP address, destination IP address, proto-
col, and destination port) are constrained. We looked at all patterns

1The heaviest rules depend to an extent on the order of rules, which
potentially can be changed without affecting filter semantics. We
observed, however, that reordering does not change much this pat-
tern.
2This breakdown is different than the AL60 and AL100 subsets
that look at the total number of rules.

(combination of constrained fields); we consider an address field
constrained if at least one of the 32 bits is specified.

Table 2 shows the fraction of rules for each pattern. For
interfaces, the most common pattern by far was with the source ad-
dress constrained and the other three fields wildcarded. Other pat-
terns with at least occurrences were protocol and source and
destination addresses; only the two address fields; protocol, port
and source address; and port and protocol. For filters, the
most common pattern (71% of rules) had the source and destination
fields constrained; and the second most common pattern (29%) had
only the source address field constrained. Other two patterns (with
about 0.05% occurrence) are the source, protocol, and port fields;
and the protocol and port fields. The pattern where all fields are un-
constrained corresponds to “permit all” rules (which are specified
as the trailing rule in some filters in order to obtain a default permit
action.) More rules have the address fields constrained since the
address fields have a richer natural set of relevant values. The port
field is essentially a refinement of the protocol field which typically
is constrained only when the protocol is specified.

Table 3 shows pattern occurrence in filters: Each filter is counted
as having a pattern if at least one of its rules has the pattern. Al-
most all filters have at least one rule with only the source address
constrained; a rule with the source protocol and port fields con-
strained; and a rule with protocol and port fields constrained. The
trailing permit all rule (that corresponds to the unconstrained pat-
tern) occurs in smaller filters with fewer than 60 rules; these filters
were applied to a significant fraction of traffic. Many filters contain
a rule with both address fields constrained or with the destination
address constrained.

Interfaces
src dest pr po ALL

83.49 92.80 96.61 29.12
9.01 3.20 1.64 0.05
4.29 2.28 1.64 0.05
1.57 0.00 0.00 0.00
1.36 0.20 0.00 0.00
0.16 1.44 0.00 0.00
0.10 0.001 0.12 70.78
0.01 0.00 0.00 0.00

0.0001 0.00 0.00 0.00

Table 2: The percentage of use of each pattern. Patterns are
specified with constrained fields having a “1” entry and wild-
carded fields with a “ ” entry. For ALL , AL60 , and AL100 ,
each rule is weighted by the fraction of packets subjected to its
filter. For S200 , filters and rules are weighted uniformly.

Interfaces
src dest pr po ALL

99.41 99.82 99.95 97.53
99.31 99.82 99.95 12.35
99.31 99.82 99.95 12.35
73.23 0.00 0.00 0.00
63.07 17.75 0.00 0.00

2.57 39.89 0.00 0.00
43.46 7.00 14.35 87.65

0.20 0.00 0.00 0.00
0.29 0.00 0.00 0.00

Table 3: The weighted percentage of filters with at least one
rule with a certain pattern. For ALL , AL60 , and AL100 ,
each filter is weighted by the fraction of packets subjected to it.
For S200 , filters are weighted uniformly.

Table 4 shows the amount of traffic directly resolved by rules
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Figure 3: Partial order for the filter in Table 1

of certain pattern. The default rules (either the default “deny” or
a trailing “permit all”) resolve half the traffic in the smaller filters.
Otherwise, rules with only the source field specified resolve the vast
majority of packets. Other rules that resolve some traffic have the
source, protocol and port fields specified, or the port and protocol
fields specified.

Interfaces
src dest pr po ALL

52.92 97.45 99.68
40.73 0.00 0.00

default deny 5.76 1.98 0.00
0.40 0.58 0.32
0.18 0.00 0.00

Table 4: Fraction of traffic resolved by rules of certain struc-
ture. “Default deny” means that the packet did not match any
rule and got resolved by the default (deny) action of the filter.

4. ALGORITHMS
We consider three basic performance metrics. The first is mem-

ory needed to store the data structure (we count the total number of
rules and decision-nodes that are stored). The other two metrics are
worst-case and average-case packet classification time (in terms of
number of memory accesses to rules or decision nodes).

4.1 Decision lists
The simplest and most natural algorithm is to conduct a linear

search through the ordered list of rules, until the first matching rule
is found. We refer to such processing as a “decision list.” We
measure the memory and the worst-case time of a decision list by
the total number of rules in the list. The average-case time for a
decision list on a set of packets is the average, over packets, of the
number of rules evaluated until the packet is matched. Although
very efficient in memory, the linear worst-case processing time of
decision lists is too slow for many settings [18].

We use decision lists as a reference point when looking at mem-
ory versus time tradeoffs. We also consider improving average-case
time of a decision list by reordering rules (Note that memory and
worst-case time remain the same under reordering, unless there is
redundancy and rules can be removed without affecting semantics.)

Rules have a defined partial order on them. Any permutation
that preserves that partial order also preserves the semantics of the
filter: Two rules can change their order if they have the same action
or if their domains are disjoint, otherwise, one precedes another
according to their index in the decision list. The partial order on
the 11-rule filter shown in Table 1 is illustrated in Figure 3.

The problem of reordering rules of a decision list to reduce av-
erage search time was studied in different contexts. Even in the
special case where rules are commutative, the problem is known

to be NP-hard; but the greedy algorithm, which iteratively selects
and places the rule that resolves the largest number of remaining
inputs (packets) has a small constant performance ratio[10, 8], and
exhibits good performance on real-life data-sets for various appli-
cations [7, 4]. It is not hard to see that the worst-case perfor-
mance of the greedy algorithm in the non-commutative case can
be bad. We implemented Extended Greedy, which is an exten-
sion of greedy where each iteration performs a (locally optimal)
placement of a rule along with all its predecessors (in the transitive
closure). Observe that when rules are commutative (the partial or-
der is flat), Extended greedy reduces to the plain greedy algorithm.
The Extended Greedy heuristic does not have a bounded perfor-
mance ratio on general instances: it is east to construct contrived
instances on which it does not perform well. It is motivated, how-
ever, by particular observed properties of our filters data: One prop-
erty is that our filter instances have long “commutative” stretches
(In particular, rules that have the same action commute). Within
each stretch, the greedy (and hence extended greedy) reordering
are close to optimal. Another critical property is the Zipf-like rule
usage which means that only the few heaviest rules really matter
and moving them and their predecessors (that must be moved any-
way) to the earliest possible spot, which is what extended greedy
does, achieves close to optimal ordering. Observe that if there was
a single rule that resolves all the traffic, then extended greedy would
be optimal, since it will move this rule as far to front as possible. It
is not hard to see that with Zipf-like rule usage distribution, the Ex-
tended Greedy algorithm has a small bounded performance ratio.

4.2 Decision trees
We construct decision trees in a top-down manner (as in previous

work). We start with the root node that has all rules associated with
it. At any point we consider a (currently a leaf) node and the set of
rules associated with it. The decision whether to split the node and
if so, which test (cut-rule) to use is locally optimal with respect to
the optimization criteria and set of cut-rules: The cost of each cut-
rule is computed under the assumption that the respective potential
children are leaf nodes. The cost of not splitting the node is the cost
of linearly searching the associated rules.

4.2.1 Cut-rules
The cut-rules we use are 1-dimension generalizations of the orig-

inal rules. We include all prefixes (ranges) (as proposed in [15]
and adapted by later schemes), and all single specified bits appear-
ing in any rule in the source or destination address specifications
(as suggested in[25]), all port ranges (being equal, less than, more
than, or in the range of any specified port value3), and all proto-
cols. Naturally, more generalizations can be considered like -bit
combinations of the source or destination addresses, and high de-
gree multiple-fields cut-rules [21], but although it is always possi-
ble to obtain better trees by expanding the set of cut-rules, the set of
all possible generalizations is exponential so we can not use them
all. Since we use a rich set of possible cut-rules and the same set
applied in the constructions of all types of decision trees, we be-
lieve that our conclusions on relative performance of the different
schemes are robust to these variations.

4.2.2 Node splitting: standard and common-branches
When a node is split, the rules associated with it are assigned to

its children, according to the relation between the domain of the
rule to the domain of the selected cut-rule. The domain of the rule
can be contained in the domain of the cut-rule, be disjoint to it, or
3Note that it is sufficient to consider port values that are stated in
some rule



neither, in which case we say that the rule is overlapping. Packets
that fall in the domain of the cut-rule can not be matched by rules
with domains disjoint to that of the cut-rule, and vice versa. Thus,
the domains of contained and disjoint rules are mutually exclusive.

Consider a node with a set of rules and a cut-rule. Denote
by , , and the subsets of with domains that are contained,
disjoint, and overlapping the domain of the cut-rule. We consider
two basic forms of branching: standard splitting, where rules with
domains that overlap the cut-rule are replicated and associated with
both decision branches (that is, one branch get rules and the
other branch has rules ) and common branches, where over-
lapping rules are assigned to a third, common branch (That is, the
common branch has the rules and the two decision branches have
rules and .) The common branch is explored by any packet
that is evaluated at a node; by evaluating the cut-rule only one of
the decision branches is explored. Note that the splitting is done per
node, thus, it is possible to use both standard and common-branches
splitting in a single decision tree. In our evaluation, however, we
consider pure standard or common-branches decision trees.

Wildcards in rules can result in many overlapping rules that get
replicated in both branches of standard decision trees. Replication
can thus potentially increase the size of the tree by a constant factor
on each level. In the worst-case, the size of a standard decision
tree can be exponential in the size of the respective decision list.
Common branches avoid replication of rules and thus result in trees
that have worst-case size that is linear in that of the decision list.

With standard decision trees, we implemented a heuristic of push-
ing common rules upward: Rules that are common to all leafs that
are descendents of a decision node are processed at the decision
node (at the furthest ancestor that has the rule common to all its
leaves.) This heuristic was proposed in [21] and led to significant
reduction in storage. This heuristic is applied after the tree is com-
puted, and as a result, interior nodes have rules associated with
them. We refer to the resulting decision trees as enhanced standard
decision trees and to the original decision trees without pushing
rules upward as plain standard decision trees. Enhanced standard
trees may seem reminiscent of common branching, as they avoids
rules replication. The qualitative differences are that worst-case
size of enhanced standard decision trees is exponential; pushing
rules upwards is applied in retrospect after the tree is computed
whereas common branching is integrated with the local optimiza-
tion; and the rules resident (pushed upward to) an interior node are
linearly searched.

An effective heuristic to control memory size in standard deci-
sion trees is to halt node splitting when the node has fewer than
some set number of rules [21]. This heuristic can also be performed
with common-branches trees and results in worst-case size that is
at most a fraction larger than the original number of rules.

4.2.3 Evaluation procedure
The evaluation procedures for standard (plain or enhanced), and

common-branches decision trees have acyclic flow-chart form: Both
assume random memory access, rules are evaluated in order, and
each cut-rule has associated “conditional jump statement.” For
standard decision tree, evaluation starts at the root and follows cut-
rules down to a leaf node. Linear search is then performed on the
rules present at the leaf node. For enhanced standard trees, rules
present at interior nodes are linearly searched before the respective
cut-rule is evaluated. Figure 4 shows an enhanced standard deci-
sion tree and the corresponding evaluation procedure. Sets of rules
(that are pushed up to respective internal nodes or present at leaves)
are denoted by capital letters.

Common-branches decision trees are evaluated such that (recur-
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Figure 4: Standard decision tree and evaluation flow-chart (sets
of rules are denoted by capital letters)

sively) the common branch is explored first and after that the cut-
rule is evaluated and the relevant decision branch is explored. Even
though we provided a recursive definition to the order of evalu-
ation, the evaluation procedure itself need not be recursive and
has a simple flow-chart form. In particular, there is no need to
maintain extra state as in a recursive evaluation. Figure 4 shows a
common-branches decision tree and the respective evaluation pro-
cedure. Evaluation procedures for common-branches decision trees
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Figure 5: Common-branches decision tree and evaluation flow-
chart (sets of rules are denoted by capital letters)

generally have a directed acyclic graph (DAG) format whereas those
for standard decision trees always have a tree format. Like stan-
dard decision-trees, the evaluation of decision-trees with common
branches can be fully pipelined.

We used the following refinements to speed up average-case time.
We start our algorithm not with the original order of rules but with
a reordered list that is computed using the Extended Greedy algo-
rithm. The evaluation procedure has (ordered) sublists of rules (all
rules associated with a leaf node or pushed upward rules at interior
nodes) that are linearly searched. We maintain the index of the min-
imum index matching rule encountered so far, and the processing
of each sublist is halted when that minimum index is exceeded.

Our performance metrics for decision trees generalize those of
decision lists. The memory is measured by the total number of rules
(including replicated rules) plus the number of interior nodes. The
evaluation time of a packet is the total number of rules and cut-rules
that are resolved until the action is determined. Each evaluation of
a packet reaches a leaf of the decision tree after following decision
branches on a path from the root. For standard decision trees, the
processing time is at most the total number of rules and interior
nodes (counting rules present at interior nodes and the leaf) on the
path; but can be smaller with the refinements we implemented. For



common branches decision trees, we also account for rules and cut-
rules that are evaluated using the common branches.

The evaluation procedure for the standard decision tree in Fig-
ure 4 has size and worst-
case time .
A packet that “reaches” the leaf has processing time at most

. The evaluation procedure for the common branches
decision tree in Figure 5 has size

and worst-case time
. The process-

ing time for a packet that “reaches” leaf is at most
.

4.2.4 Optimization criteria
We construct decision trees under three different local optimiza-

tion criteria: worst-case, average-case, and mixed.
Worst-case: The cost of not splitting the node is (linear

search of the rules associated with the node). The cost of a split
decision with a given cut-rule is
for standard splitting (“1” for evaluating the cut-rule and the maxi-
mum number of rules between the two decision branches). The cost
of a split with a common branch is (the
cut-rule, with cost of , and the common branch, with cost , are
always evaluated, and we use the maximum cost of the two decision
branches or .) The split costs of each cut-rule are the same
for standard and common-branch splitting, but since the number
and content of branches is different we generally end up with dif-
ferent trees (unless the set of overlapping rules is empty). If the
minimum cost cut-rule has a lower cost than not splitting, the node
is made an interior node and the appropriate rules are assigned to its
branches. Otherwise, the node remains a leaf. The greedy splitting
is then applied recursively to each branch.
Average-case (traffic aware): We consider all recorded packet

traffic associated with the node. We first define the average-case
linear-search cost for a set of packets on a node to be the average,
over packets, of the number of rules (among the rules associated
with the node) that is traversed until a matching rule is found or
until the index of the current rule exceeds the index of the lowest-
index matching rule seen so far for the respective packet (prior to
visiting that node). The average-case no-split cost is simply the
average-case linear-search cost of the node. The average-case split
cost for a given cut-rule is as follows: For standard splitting it is

(the cut-rule is always evaluated) plus the sum over the two de-
cision branches of the fraction of packets assigned to the branch
times the average-case linear-search cost of these packets on the
rules assigned to the branch ( or ). For common-
branch splitting, the average-case split cost is calculated as (for
cut-rule evaluation) plus the average-case linear-search cost of all
packets on rules plus the sum over the two decision branches of
the fraction of packets going to the branch times the average-case
linear-search cost of these packets on the rules of the branch ( or

).
Mixed: We used a weighted average of the worst-case and average-

case split costs (and no-split cost) for each cut-rule. Our results are
shown for a 50%-50% weighted average. Since the average-case
cost is always smaller than worst-case cost, this results in a (local)
decision that has worst-case cost that is at most twice that of the
best worst-case cost.

5. COMMON BRANCHES VERSUS STAN-
DARD SPLITTING

When wildcards are extensively used, standard decision trees can

become significantly larger than the original decision list: If a cut-
rule is specified on a single field (say, source address only), then all
rules that are wildcarded on that field (for example, rules that only
specify protocol or destination address) get replicated in all chil-
dren. If (as in [21]) a cut-rule is specified on multiple fields, e.g.
source and destination addresses, then rules that are specified on
fields that include only a strict subset of these fields (e.g., source
address only or destination address and protocol only) get repli-
cated in multiple children. Cuts that result in multiple children can
further exacerbate the size blowup.

Common branches decision trees have memory use that (even
in the worst-case) is close to that of the original decision list and
thus can be significantly smaller than standard decision trees. The
evaluation time of standard and common branches trees depends
on the rules and set of cut-rules but generally is longer for common
branches trees (since the common branches need to be evaluated
in addition to the decision branches). The actual performance gap
between common branches and standard trees depends on the struc-
ture of the rule sets. We attempt to qualitatively illustrate this by
considering three idealized rule set properties:

At any point in the constructions, the best cut-rule has no
overlapping rules. This can occur when rules are highly spec-
ified on a common area. Since there are no overlapping rules,
there is no rule replication in standard trees and no rules are
assigned to common branches. Therefore, standard and com-
mon branches constructions yield the same decision trees:

Wildcards are randomly and independently placed in each
rule. We refer to this as the “random property.”

The rule set is structured in that it contains several “indepen-
dent” (disjoint) patterns (e.g., source only or port and proto-
col only or fractured packets and destination only or packet
size only). We refer to this as the “structured property.”

We explore the random and structured properties through analy-
sis of simple rule sets.

Randomwildcard placements. Consider a family of rule sets
generated by setting each bit, in each rule, to one of uni-
formly and independently at random; and using 1-bit cut-rules. We
obtain that the best cut-rule for any subset of rules has (by expecta-
tion) of the rules overlapping, disjoint, and contained.
A standard decision tree has depth (and thus time) 4 (the
number of rules assigned to a node decreases by a factor of
in each level) and size
(the total number of rules assigned to nodes in a level grows by a
factor of with each level). A common-branches decision tree
obtained for such a rule set has depth (the total number of
rules assigned to a node decreases by a factor of 3 with each level),
size , and time (the time dependence is
captured by the recursive relation ). The
respective performance is summarized in Table 5. For “random
property” rule-sets, common-branches decision trees use consider-
ably smaller memory size but also considerably higher processing
times than standard trees.

Structuredwildcard placements. Consider filters with rules
over fields, where each rule has one of the fields completely
specified, and the other fields wildcarded. Suppose that
rules are specified in each field and that subsets of rules that are
4We omit lower order terms from memory and time bounds.



“random” property
standard common branches

memory
time

“structured” property
standard common branches

memory
time

Table 5: Performance of standard and common branches deci-
sion trees for the two rule-set properties.

specified on a common field can be split using a balanced decision
tree of logarithmic depth.

With this structure, cut-rules that are specified on more than one
field are not effective, since all rules will be overlapping with re-
spect to such a cut-rule. Thus the only effective cut-rules are those
specified on a single field. For such a cut-rule, all rules that are not
specified on the same field as the cut-rule will be overlapping.

Consider standard decision trees for such rule-sets and the pro-
cessing of a node with a subset of the original rules at a node. The
most effective cut-rule can only split half of the rules in a certain
dimension. Thus, the depth of the tree (and the worst-case time)
is . Rules that are overlapping get repeatedly repli-
cated under both branches. The total size of the resulting tree is

.
We next consider decision trees with common branches. At each

decision node we select a cut-rule that best splits rules associated
with one field, rule that are not specified on that field are assigned to
the common branch. The resulting tree has the structure depicted in
Figure 6, of a single common-branches path with hanging sub-trees
that each includes all rules specified on a certain field. The depth
of this tree is , its size , and the worst-case search time

. (See Table 5 for a summary). It follows that for
such rule-sets common-branches decision trees have similar worst-
case time and considerably better memory than standard decision
trees.

F5

F4

F3

F1

F2

Figure 6: Common branches for wildcarded rule sets. Com-
mon branches are marked by dotted lines. Each triangle is a
decision tree applied to all (and only to) rules specified on that
field. The resulting evaluation order is a sequential field-by-
field evaluation.

These rule-sets properties show that the respective performance
of standard versus common branches trees highly depends on the
wildcards structure. Without wildcards, common branches degen-
erate to standard decision trees; there are no overlapping rules and
thus there is no replication by standard trees or rule assignment
to common branches. When wildcard positions are random, stan-
dard and common branches exhibit different memory-time trade-
offs, common branches use much smaller memory and standard
trees have faster evaluation times. When strong correlations are
present, common branches provide superior tradeoffs.

Although real-life rule sets do not completely fall in one cate-
gory, we believe that the structured property captures enough of

10ï220
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(deny)
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3,4

Figure 7: Partial order for a 220-rule filter

real-life rule sets to benefit from common branches. Note that
common-branches decision tree construction does not require struc-
ture to be explicit: the “fields” need not be explicit, fully specified,
or perfectly disjoint.

6. PERFORMANCE EVALUATION
We use our real-life data of filters and corresponding traffic to

study the memory, worst-case time and average-time performance
of the different classification algorithms. In particular, understand
memory versus time tradeoff of the different decision trees and
compare standard and common branches decision trees. We also
quantify average-time versus worst-case time performance.

6.1 List reordering
Before presenting aggregated results, we examine the perfor-

mance of Extended Greedy reordering on two interfaces.
Our traffic data for the 11-rule filter of Table 1 on an interface it

was assigned to had all captured packets resolved by rule #9 of the
filter. Since rule #9 must follow all preceding rules (see the partial
order shown in Figure 3), the list can not be reordered such that rule
#9 is placed earlier. Thus, in this particular case, reordering can not
improve the average-case search time.

Figure 7 shows the partial order of another filter with 220 rules
(rules are not listed). 70% of permitted packets were resolved by
rule #82, about 30% by rule #27, and about 0.1% by rule #3. The
Extended Greedy reordering algorithm moved rule #3 to the top of
the list, rule #82 to position 10 and rule #27 to position 11. The
average time was consequently reduced from 65.3 to 10.3.

This 220-rule filter was applied at several interfaces of the router.
At another interface, 46% of packets got resolved by rule #66,
about 47% by rule #21, 5% by rule #32, and the others (less than
1%) by rules #3 and #26. The Extended Greedy reordering algo-
rithm placed rule #3 as the first one and rules #21, #66, and #32,
and #26, in this order, in positions 10-13. The average-time conse-
quently reduced from 42.3 to 10.6.

Observe that the variance in processing time is very low, since
there were no observed flow that utilized other rules. This seems to
be the typical situation (as depicted in Figure 2.)

Interestingly, two different orderings worked best for the two in-
terfaces that utilized the same filter. This is because different inter-
faces serve packets from different source addresses. This is consis-
tent with our observation that some rules never get utilized: Since
filters tend to be designed according to general guidelines, often the
same filter is used in multiple interfaces. Therefore, for any particu-
lar interface there could be rules that never apply to packets routed
through the interface. This also suggests that traffic-aware opti-
mization should be performed per interface and that performance
can be sensitive to routing changes, as they can affect the traffic
mix (for example, destination addresses seen).
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Figure 8: Average time for original and reordered decision list
on (top left), subset of that only includes inter-
faces with filters without a “permit all” rule (top right),
(bottom left) and (bottom right).

We next consider aggregated results on average-case time per-
formance of original ( ORIG-LIST ) versus reordered by Extended
Greedy ( REORD-LIST ) decision lists. ACLs have a default deny
action where packets that are not resolved by any rule in the filter
are denied. Our data had large fraction of filters (and associated
traffic) that had a “permit all” as the last rule of the filter (thus mak-
ing the filter a “default permit” action). On these “default permit”
filters (all had fewer than 60 rules) it turns out that over 99% of
packets were resolved by this last rule. The “permit all” rule is pre-
ceded by all other rules in the partial order and can not be moved
up to a higher priority spot (unless there are redundant rules with
permit actions that can be eliminated altogether), thus, the average
time could not be improved by reordering rules on these filters. Fig-
ure 8 (top part) shows the average time distribution with or without
reordering over all , and also when restricted to the sub-
set of interfaces with filters that do not have a trailing “permit all”
rule. Figure 8 (bottom part) shows the distribution for and

interfaces. We see that reordering can be very effective in
decreasing average time for the restricted subset of filters without a
“permit all” rule and for and interfaces (none of
the filters with 60 or more rules had the trailing “permit all” rule.)

The average average-time performance is listed in Table 8 (
interfaces), Table 9 ( interfaces) and Table 10 (
interfaces). Recall that the memory and worst-case time are not
affected by reordering.

6.2 Decision trees
Before presenting the aggregated performance metrics we pro-

vide a closeup view of the two interfaces with the 11-rule and 220-
rule filters. These individual interfaces illustrate some general is-
sues in the structure of different decision trees. Decision trees ob-
tained using the different local optimization criteria for the 11-rule
filter in Table 1 are shown in Figure 9 (standard decision trees) and
Figure 10 (decision trees with common branches). The decision
trees with common branches are shown together with the respective
evaluation procedures. The performance of the different algorithms
on our 11-rule filter is listed in Table 6.2 and on the 220-rule filter
is listed in Table 6.2.

Recall that the packet traffic for the 11-rule filter had all packets
resolved by rule #9. Therefore, for better average-case time, rule #9
is tested earlier (and its predecessors excluded). When optimizing

method memory wc ave
decision list 11 11 9

standard decision trees
worst case 26 7 5

pu 21 7 5
pure traffic aware 17 10 3

pu 15 10 3
mixed 26 8 4

pu 22 8 4
common branches decision trees

worst case 14 7 6
pure traffic aware 13 11 3

mixed 13 9 4

Table 6: Performance on the filter in Table 1.

for worst-case, rule #9 can be placed later in the evaluation order.
The average-case optimized decision trees shown for the 11-rule

filter (in Figures 9 and 10) show heavily populated leaf nodes.
The reason is that these rules have zero-usage and further split-
ting of these nodes can not improve average case performance.
These populated leafs increase worst-case times (since leaf nodes
are searched linearly) but also improve memory usage (splitting
adds interior notes and for standard trees has an even higher mem-
ory penalty due to rule replication).

Figure 10 shows an interior node with a single nonempty child
branch. This can occur under average-case optimization. When a
cut-rule can isolate all rules from a large enough fraction of packet
traffic; after testing the cut-rule, the isolated packets get mapped
to the default action and the rest of the packets are directed to the
child. This can not happen under worst-case time optimization.

We also observe that the enhanced version of standard decision
trees seems to use considerably less memory than the plain standard
version; and the average-time performance under mixed optimiza-
tion is very close to that of the worst-case optimization since the
50%-50% weighting biases towards the worst-case (that has larger
average time).
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Figure 9: Standard decision trees for the filter in Table 1. Top:
worst-case (left) and its enhanced version (right). Bottom: (en-
hanced versions of) pure traffic-aware (left) and mixed (right).

Aggregated results
A summary of the average performance of the different algorithms
is shown in Table 8 ( interfaces), Table 9 ( inter-
faces), and Table 10 ( interfaces). The entries in each row
of the tables are sorted by magnitude. The decision lists are denoted
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Figure 10: Common-branch decision trees for the filter in Ta-
ble 1 (common branches are labeled with “?”): Worst-case
(left), pure traffic-aware (middle), and mixed (right). Below
each decision tree we show the respective evaluation flow chart.

method memory wc ave
Decision lists

original 220 220.0 65.6
reordered 220 220.0 10.3

standard decision trees
worst case 512 12.0 9.0

pu 346 12.0 9.0
pure traffic aware 427 207.0 4.3

pu 224 207.0 4.3
mixed 546 12.0 9.0

pu 381 12.0 9.0
common branches decision trees

worst case 298 13.0 9.6
pure traffic aware 222 207.0 4.3

mixed 299 17 9.3

Table 7: Performance on the 220-rule filter.

by ORIG-LIST (original order) and REORD-LIST (reordered). De-
cision trees are produced according to the three optimization crite-
ria (“wc-” for worst-case, “ta-” for average-case (traffic aware), and
“mx-” for mixed). Standard decision trees are denoted by “DT” for
the plain variant and “DT ” for the enhanced variant. Common
branch decision trees are denoted by “CBDT.”

The tables show consistent patterns over the three sets of in-
terfaces: decision lists are the most memory efficient; common-
branches use much less memory than standard decision trees; en-
hanced standard decision trees use significantly less memory than
the plain variant, but still more than common-branches. The tables
also show that when optimizing for worst-case we use more mem-
ory than under pure traffic-aware optimization; which is explained
by many rules with zero usage. Mixed optimization results in sim-
ilar memory usage as worst-case optimization.

Memory. A more refined view of the aggregated results on mem-
ory usage is provided by the cumulative distributions shown in Fig-
ure 11. The left hand side figure includes standard decision trees
(plain or enhanced), and shows that pushing common rules up-
ward is a very effective heuristic. The right hand side figure shows
common-branches and enhanced standard schemes and show a clear
advantage for common branches. Common-branches trees use mem-
ory that is fairly close to that of decision lists. Consistent patterns
were obtained for and interfaces.

When examining the ratio of size to decision list size for com-
mon branches, standard, and enhanced standard schemes optimized
for worst-case time, we noticed different outliers “worst-case” be-
havior: The largest ratio for common branches trees was only
whereas the largest ratios for standard decision trees were for en-
hanced trees and for plain trees.

Worst-case time. Cumulative distribution for worst-case time
for interfaces is shown in figure 12 (consistent results were
obtained for and interfaces). Decision lists, as
expected, have the worst time. The worst-case time on standard
and common-branches decision trees that have the same optimiza-
tion criteria is very close. The pure-traffic aware optimization re-
sults in decision trees with considerably worse worst-case time than
mixed or worst-case optimizations. The best performers, bunched
together, are the worse-case and mixed optimized, common-branches
and enhanced standard decision trees. (Plain standard decision
trees have the same worst-case time as enhanced standard decision
trees and are not shown in the figure.)
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Figure 12: Worst-case time for interfaces.

Average-case time. Cumulative average-time distribution for
decision tree algorithms on interfaces is shown in Figure 13.
(Consistent results were obtained for and inter-
faces.) The best performers are the standard and common-branches
schemes that are optimized for average-case time. The mixed and
worst-case optimization yield decision trees with worse worst-case
time. The average time performance of enhanced standard and
common branches trees that are constructed under the same local
optimization criteria is very close.
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Figure 13: Average time ( interfaces).



Memory ORIG-LIST REORD-LIST TA-CBDT WC-CBDT MX-CBDT TA-DT WC-DT MX-DT TA-DT WC-DT MX-DT
46.30 46.30 55.71 60.31 62.17 79.31 83.05 86.29 113.63 132.86 143.56

Worst-case WC-DT WC-DT MX-DT MX-DT WC-CBDT MX-CBDT TA-DT TA-DT TA-CBDT ORIG-LIST REORD-LIST
11.58 11.58 11.83 11.83 12.83 12.95 34.62 34.62 35.08 46.30 46.30

Average TA-DT TA-DT TA-CBDT MX-DT MX-DT MX-CBDT WC-DT WC-DT WC-CBDT REORD-LIST ORIG-LIST
4.80 4.81 4.84 8.08 8.09 8.26 9.24 9.24 9.57 35.68 37.10

Table 8: Memory, worst-case time, and average time, for interfaces.

Memory ORIG-LIST REORD-LIST TA-CBDT TA-DT MX-CBDT WC-CBDT WC-DT MX-DT TA-DT MX-DT WC-DT
82.05 82.05 84.58 104.37 107.61 111.71 141.96 150.17 152.63 207.77 212.85

Worst-case WC-DT WC-DT MX-DT MX-DT MX-CBDT WC-CBDT TA-CBDT TA-DT TA-DT ORIG-LIST REORD-LIST
11.59 11.59 11.64 11.64 13.01 13.29 59.62 65.68 65.68 82.05 82.05

Average TA-DT TA-CBDT TA-DT MX-DT MX-DT MX-CBDT WC-DT WC-DT WC-CBDT REORD-LIST ORIG-LIST
4.42 4.43 4.44 7.55 7.56 7.81 8.31 8.31 8.57 13.51 24.33

Table 9: Memory, worst-case time, and average time, for interfaces.

Performance on filters. On filters we ob-
served that the worst-case time performance is similar for stan-
dard and common-branches decision trees, and both significantly
outperform decision lists (linear search). Memory size is mini-
mized by decision lists, common-branches trees are the next best
performer, followed by the enhanced standard decision trees, and
then by standard decision trees. These results are consistent with
what we observed for , , and interfaces:
Common-branches decision trees emerge as the best performers,
with similar worst-case time and significantly less memory than
(enhanced or plain) standard decision trees. We also observe that
enhanced standard decision trees use significantly less memory that
plain standard decision trees.

Time versus memory. When examining outliers in the relative
memory and time performance of standard and common-branches
decision trees we observed that while the memory ratio can be
large, the worst-case time ratio is small and bounded. On ALL
interfaces, common branches decision trees were never more than
50% slower than standard trees. Interestingly, however, the outliers
with large memory gaps are not those with large time gaps This
suggests that it is worth while to construct both types of trees and
choose one with better tradeoffs. We can always select a scheme
with worst-case time that is within 1.25 factor and memory that is
within a 1.5 factor from that of the best one. This suggests that hy-
brid trees of plain and common branches nodes can be of interest.

Performance stability. Our traffic-aware decision trees were
constructed using full day traffic data (August 29, 2004). When
applying them to traffic data collected on the same interfaces in
the subsequent three weeks we observed that average-case perfor-
mance remains virtually unchanged.

7. CONCLUSIONS
We propose common-branch decision trees for packet classifica-

tion. Common-branches trees use linear amount of memory in the
worst-case as they avoid rule replication that occurs with standard
decision trees. They do have the benefits of standard decision trees
classifiers including a very simple packet evaluation procedure that
can be fully pipelined. Our experimental evaluation on real-word
filters showed that common branches trees use much less memory
than standard decision trees and have comparable worst-case and
average-case search times. We attribute the good performance of
common branching to presence of extensive wildcarding with cer-
tain structure in the rule sets.

A forward looking question is whether this performance gain of
common branches will prevail as filters evolve. Correlations and
structure of this type occurs in many different domains of real-life,
from Web access patterns to word occurrence in documents to mar-

ket basket data and thus are likely to persist. While our real-life
rule-sets used 4 main fields with one or two dominant patterns per
filter, filters are evolving to be larger and more diverse (with more
patterns being used over a larger number of fields). Even with large
number of fields, we still expect a small number of fields to be spec-
ified in any one rule. These trends will lead to an increase in the
performance gain of common branches.

We suggest that average-case time is an important metric in some
packet classification settings and propose algorithms with improved
average case performance. We show that these algorithms are very
effective on our data; and qualitatively explain it by the Zipf-like
pattern of rule usage in the filters. Can we expect this pattern to
prevail as filters and rules get more complex? We believe that it
will: Zipf-like patterns are observed in many Internet applications
and realms of life, and it seems likely that we will find them under
emerging applications of packet classifications: For QoS filters, we
can expect that the bulk of packets fall in some dominant classes
of service; when an interface serves multiple VPNs with different
classification requirements, we can expect that the capacity usage
of different customer VPNs is Zipf-like.

We discuss some avenues for further study. While we constructed
decision trees with all decision nodes being standard or common-
branches, one can construct hybrid trees, with some interior nodes
being standard decision nodes and others having common branches.
In fact, our code handles general hybrid trees, which like pure com-
mon branches have an evaluation procedure with a DAG form (the
only difference is that rule replication occurs and the same rule can
appear in multiple places.). Likewise, we constructed trees where
the local optimization criteria was geared to either the average-case
metric, worst-case metric, or a mixed 50%-50% weighting of the
two. The 50%-50% mix resulted in performance that is close to
that of the worst-case. It can be interesting to explore the full spec-
trum of tradeoffs and in particular see to what extent we can retain
average-case performance while bounding the worst-case perfor-
mance. Last, while our evaluation utilized cut-rules with binary
and single-dimension branching, common branches can be used
with more complex cut-rules including non-binary[15] branching
(where each node has multiple children, each corresponding to a
different range of the same dimension) or multi-dimensional cuts [21]
(where hypercubes are used instead of ranges).
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