Efficient Estimation Algorithms for
Neighborhood Variance and Other Moments

Edith Cohen * Haim Kaplan |

January 20, 2006

Abstract

The neighborhood variance problem is as follows. Given a (directed or undirected) graph
with values associated with each node, compute a data structure that for any given node v and
r > 0, would quickly produce an estimate of the variance of all values of nodes that lie within
distance r from v. The problem can be generalized to other moment functions and to arbitrary
distance-dependent decay.

These problems are motivated by applications where the relevance of a measurement observed
(or data present) at a certain location decreases with its distance, and thus the aggregate value
varies by location. The centralized version of the problem is motivated by applications to query
processing on graphical databases. The distributed version of the problem falls in a model
we recently introduced for spatially decaying aggregation and is motivated by sensor or p2p
networks.

We present novel algorithms for the centralized and distributed versions of the problem. Our

algorithms are nearly optimal, the centralized version requires O(m) time and the distributed
version requires polylogarithmic communication per node or edge (depending on assumptions).

1 Introduction

Variance and moments are commonly used and very basic properties of data sets and distributions.
We consider these problems in a spatially-decaying setting, where values are present at nodes of a
graph (or a network). Data items present at one node are relevant to other nodes, yet, the relevance
decreases with distance [5]. Thus, each location views the items through a different distribution
and is interested in aggregate values accordingly.

The weight of an item as viewed from a certain location is determined by some decay function
applied to its distance [5]. One example of a decay function is the r-threshold function, which assigns
uniform weights to items within distance r and 0 weight otherwise. The respective aggregates are
computed over all items present in the r-neighborhood. Generally, a decay function can be any
non-increasing function.

The spatially-decaying moments problem is to efficiently compute a summary that would allow
us to retrieve, for each node v, power w in some fixed range, decay function, and a point a, the
(approximate) weighted average of |x — a|” over items. For an r-threshold decay function, this
aggregate value is simply the average of |z — a|” over all values = of items that reside at nodes in
the r-neighborhood of v. When instead of an arbitrary value a we use the weighted mean (which

*AT&T Research Labs, 180 Park Ave. Florham Park, NJ, USA. Email: edith@research.att.com.
¥School of Computer Science, Tel-Aviv University, Tel Aviv, Israel. Email: haimk@cs.tau.ac.il.

varies from node to node), we refer to the problem as spatially-decaying central moments; when
w = 2 this is the spatially-decaying variance; and for r-threshold decay this is the variance over all
values in the r-neighborhood. (see Figure 1 for an example of a network, values, and respective
moments.)

a2 c,l

a2 b0

Figure 1: The 2-neighborhood of node a is {a,b, h,d, e, g,c}. The mean according to 2-threshold
decay is thus 8/7, the second moment about 0 is 14/7 = 2, and the variance is 238/343 = 34/49.
For node ¢ the 2-neighborhood is {¢, b, f, g,e,a}, the respective mean is 7/6, the second moment
about 0 is 15/6 = 2.5 and the variance is 246/216 = 41/36.

The problem has a centralized variant, where the graph is given as input, and a distributed
variant, where the nodes form a network, and the goal is to use a small amount of communication
and obtain, at each node, a compact summary that would allow it to answer queries on its own
neighborhoods (or arbitrary decay functions). The centralized variant of the problem is motivated
by applications in traditional graphical databases, for example, XML documents or analyzing Web
structure. The distributed version of the problem is motivated by emerging applications, such as
P2P networks and sensor networks, where different data items are present at nodes connected by
some low-degree communication network [5].

We present algorithms that yield (1 + €)-approximate answers (for a fixed € > 0) for spatially-
decaying moments and variance. The size of the summaries are polylogarithmic per node and the
running time for the centralized version is O(m). Our algorithms are novel for both the centralized
and distributed versions of the problem.

Related work: From an algorithmic standpoint (but less so from an application standpoint),
spatially-decaying aggregation generalizes time-decaying aggregation on massive data streams [6]
and in particular, sliding-window aggregation for massive data streams [7, 8]: time-decaying ag-
gregation on data streams correspond to spatially-decaying aggregation on directed path graphs,
and sliding windows correspond to neighborhoods. Thus, spatially-decaying variance generalizes
the sliding-windows variance problem which was studied by Babcock et al [1]. The Babcock et
al techniques do not seem to carry over to the spatial setting: Exponential Histograms [7] do not
seem to work in the spatial setting (see [5] for discussion). Moreover, their algorithm relies on ezact
computation of the variance and average in each bin of the histogram, an operation that seems
fundamentally hard in the spatial setting. It is also not clear if the Babcock et al sliding-window
variance algorithm can be extended beyond sliding windows to time-decaying variance under general
decay functions [6].

The challenge in spatially-decaying aggregation is that the aggregate value (or summary) is
location-dependent. Yet, we do not want to recompute it from the raw distribution for each
node, as this would result in quadratic time in the centralized setting and flooding with quadratic
communication in the distributed setting. The moments problem imposes additional challenges,
since even beyond the issues of computational efficiency, it is not even clear how to summarize

the data into a compact representation that captures sufficient information to answer the queries.
Distributed computation makes the problem even more challenging, since it basically requires a
very efficient way of both summarizing and communicating the essence of the data such that each
node can distill the information relevant to it.

Overview and insights:

A basic ingredient in our algorithms is approximate spatially-decaying counts, where given binary
item values the goal is to produce a Neighborhood Summary (NH-summary) which allows to obtain,
for each node v and decay function, an approximate decaying count of values. (For the special case
of threshold decay function this amounts to estimating, for any given r > 0, the count in the
r-neighborhood of v). Algorithms for centralized computation of NH-summaries were introduced
by the first author in [4]. Further new ideas which allow efficient distributed computation of NH-
summaries and handling of general decay functions are presented by the authors in [5].

The crux of our approach is a novel technique to summarize a set of values to a poly-logarithmic
size summary that allows us to retrieve an approximation of the moment about any constant. These
summaries are obtained by applying a logarithmic number of global predicates to each value. Over
each predicate we then compute an NH-summary for the count of values that are true for the
predicate. Each NH-summary has polylogarithmic-size and can provide, for each decay function,
the approximate weight of items that satisfy the predicate.

The key insights we need are in the choice of these predicates. In order to estimate neighborhood
moments, we need to somehow be able to preserve and retrieve information about the distances
between values and any given point. If we are only interested in moments that are about some
globally-fixed point a, the problem is easy: Each value z is bucketized according to its distance
from a, |z — al, using buckets with exponentially growing width. We then only need to know
an approximate weight of items within each bucket, something we can do using an NH-summary
obtained by performing a spatially-decaying count of items in each bucket. The catch, however, is
that we want the same summary to work for arbitrary choices of a. !

The next approach we consider is partitioning the range uniformly to a polylogarithmic number
of bins and producing an NH-summary for each bin. This partially works, and only for nodes,
decay functions, and points a, where “most” of the weight lies in a bin that is far from the bin
that a lies in (Otherwise, too much information is lost and we can not guarantee the desired (1 +¢)
approximation). Our approach is based on extending this attempt, by first folding the range of
values into a smaller range (the fold width), and then uniformly partitioning it into a histogram
with a fixed number of bins. The folding essentially amounts to discarding some values and then
performing a modulus operation by the fold width. The key property is that all distances between
values may decrease and become at most the fold width, but distances that are smaller than the
fold width remain the same. After partitioning the fold width uniformly to some constant number
of bins we obtain that all distances that are not too big and not too small (that is, are of the
order of the fold width) are approximately preserved. We use a logarithmic number of different
fold widths that are exponentially decreasing. When computing our estimate on the moment about
some value a, we sum over different foldings. Each item is accounted for in many foldings, but
there is only one folding that preserves its approximate distance from a. The larger-width foldings
would bucketize it together with a, yielding a 0 contribution to the moment and the smaller-width

Tt may seem that this approach can work for the variance, where we are interested in a moment about a specific
point (the mean). Note, however, that the mean is not global and rather depends on the aggregating node and choice
of the decay function. Thus, there are many (possibly linearly many) relevant “means” to consider that each value
can be aggregated about. We shall see that our solution to the variance relies on the summary which can retrieve
moments about arbitrary points.

bins will account for a contribution that is much smaller than the one corresponding to its true
distance.

The computation of central moments, including the variance, uses the same summaries but
requires some additional insights. The exact value of the mean is not known to the aggregating
node, and simply computing the aggregate about a (1 & €) approximation of the mean (which can
be obtained using decaying sum computations) is not sufficient for obtaining (1 + €) approximation
of the variance.

We organize our presentation as follows. In section 2 we state the spatial decay model and
the spatially-decaying sum problem [5]. Section 3 describes the summaries by defining the folding
functions and predicates that are aggregated as spatially-decaying sums at each node. Section 4
states the algorithm that for a given decay function, point a, and power w computes an estimate
of a moment from the summary. Section 6 is concerned with the variance computation (and other
central moments). The correctness proof of the algorithm in Section 4 is given in Section 5. We
conclude in Section 7 with a discussion on extending our approach to higher dimensions and k-
medians.

2 Preliminaries

We start by defining spatially-decaying aggregation [5], and in particular, the spatially-decaying
sum problem [5]. We then proceed and define our problem of spatially-decaying moments.

We model the network as a (directed or undirected) graph G = (V, E), where V = {vy,...,v,}
is the set of nodes, and there is an edge between two nodes if and only if the two nodes can
communicate. We denote the number of edges by m. Edges can have nonnegative lengths associated
with them, which correspond to distances. We denote by DIST(v;,v;) the distance between two
nodes v; and v; with respect to the shortest-path metric on the edge lengths. Nodes in the network
have data items associated with them. Each item ¢ € T is specified by a pair (f;, ¢;), where f; is its
value and ¢; € V is its location.

A decay function is a non-increasing function g(z) > 0 defined for > 0. The decay function
determines the “weight” of a remote item as a function of its distance. The decaying weight of the
item i as viewed by a node u is wy, 4(i) = g(DIST(u, ¢;)).> An important family of decay functions
are threshold functions BALL, (for » > 0), defined by BALL,(z) = 1 for z < r and BALL,(z) = 0
otherwise. The corresponding aggregation is over the r-neighborhood, where all data items that lie
within distance r have equal weight and all further items have 0 weight. Other natural classes of
decay functions are Exponential decay and Polynomial decay (see [5] for details).

An aggregate function is a function defined on a multiset of value-weight pairs. The goal
of spatially-decaying aggregation is to produce summaries with respect to a particular aggregate
function (or a class of functions). Each node u obtains a localized summary® which allows it,
for any given decay function g() (and any aggregate function in the set we consider), to obtain
(1 £ ¢)-approximate estimates of the value of the aggregate on the multiset { f;, wy (¢)}.

We measure performance by the running time needed to produce these summaries and by the
size of the resulting summaries. In the distributed setting we consider the amount of communication
per node and storage at each node. In the sequel, (14 €)-approximate estimates (or just estimates)

2Qur algorithms can be easily extended to a setting where each item has a “local” weight w?, and its decaying
weight is w?g(D1sT(u, £;)). For simplicity of presentation we assume uniform local weights.

3In the centralized version of the problem one can also consider a single summary for all nodes. The algorithms
we consider here produce separate summaries.

means that by appropriately adjusting constants in our algorithms we can handle any fixed € > 0.
To simplify the discussion, we ignore in several places scaling of € by a constant factor.

A basic aggregate is the sum (weighted sum of values), where the value at node u for decay
function ¢() is

Sy(w) = 3wy)
i
(For the sum problem we assume f; > 0 for all 7.) For BALL, decay functions,

SBaLL, (u) = > fi

i|DIST(u,l;)<r

is the sum of values in the r-neighborhood of w. In the special case where the values f; are binary,
we refer to this aggregate as the count. We define W, 4 = 3, wy 4(7) to be the decaying count
of all items as viewed by u. When u or ¢ are clear from context we will omit them from the
subscript of W, 4 and w, 4(¢). The spatially-decaying sum problem is to obtain summaries such
that each location u € V', for any decay function g() can retrieve an (1 + €)-approximate value of
Sy(u). The summaries produced by spatially-decaying sum algorithms are termed Neighborhood-
summaries (NH-summaries) [4, 5|]. NH-summaries are particularly relevant to us here since we
reduce the spatially-decaying moments problem to performing logarithmically-many computations
of NH-summaries. As discussed in the Introduction, [4] shows that in O(m) time, we can obtain for
each node a polylogarithmic-size NH-summary that gives (1 4 €)-approximate answers with very
high probability?. We studied distributed algorithms for NH-summaries in [5]. The communication
needed per node depends on the setup. Under some assumptions, e.g., if shortest path trees are
pre-computed, the summaries can be obtained using polylogarithmic communication per node.

For a set of items (with values f;, weights w(i) and W = }_, w(i)), a point v, and a power
w, the w-moment about v is defined as Y, w(i)(f; — v)*/W. We refer to the non-normalized
quantity >, w(i)(f; — v)¥ as the w-power sum about v. We also consider absolute moments defined
as >; w(i)|f; —v|*/W and the respective absolute power-sum Y, w(i)|fi —v|*. Moments about the
mean are termed central moments whereas moments about arbitrary choices of v are termed raw
moments.

The spatially-decaying (absolute) power-sums problem is to produce summaries, according to
€ > 0 and a range [w,, wp] (where wy, > w, > 0). The summaries should allow each node u to obtain,
for each v, g(), and w € [wgy,ws], a (1 £ €)-approximation of the power sum

(1) Ag(w) = (wug(D)Ifi —v|*)
i

For “pure” moments we use the notation

(2) Mﬁg(“) = Z (wu,g(4)(fi —v)“) -

Note that the w-moment is the ratio M, (u) /Wy, 4 and the respective absolute moment is A (u) /Wy, 4.
Our algorithms obtain (1 4 €)-estimates for absolute power sums and thus for pure power sums
with integral even values of w (since for even powers My (u) = A} g(u)).5
Central moments have particular significance — the most important such moment is the variance.
The (weighted) variance of a set of values is defined as V = 3, w(i)(f; — p)?/W, where p =

“The work of [4] considers only BALL, decay functions, but we show in [5] that summaries that can support BALL,
decay functions for arbitrary r > 0 can support arbitrary decay functions.
%(1 + ¢) approximate pure power sums with odd w are as hard as obtaining exact neighborhood counts [5, 7].

Yoy w(i)fi/W is the (weighted) mean. The spatially-decaying central moment is Mﬁg(u),g(“)/Wuyg
and the spatially-decaying variance is thus Mig(u),g(u)/Wu,g = Aig(u),g(u)/Wu,g, where pg(u) =
> Wy, g (Z)fz/Wu,g

Moments are the ratio of the respective power sum and W, 4. Since we can efficiently approxi-
mate W, 4 using an NH-summary, an approximation of the numerator (the power sum) would yield
approximation of the respective moment. In particular, approximate central, raw, absolute or pure
moments can be obtained from the respective approximate power sums (and vice versa). In the
sequel we will focus on power sums.

3 Foldings and predicates

We develop a technique to compute summaries for the spatially-decaying power sums problem. We
assume (this assumption is addressed in Subsection 5.1) that items have integral values in the range
0,...,R—1.

Our algorithm defines a logarithmic number of global predicates. All nodes apply each predicate
to their local items. For each predicate, the system then produces NH-summaries at all nodes. As
a result, each node stores a logarithmic number of NH-summaries (one for each predicate). We
now provide a high-level description of these predicates. We use mappings which we refer to as
foldings. Each folding ezcludes part of [0, R) and maps remaining (included) values into a range
of the form [0, R/2°7) for some j > 0 and p > 2. The range of the folding is then partitioned
uniformly into B bins, where bin b (b = 0,...,B — 1) contains values that the folding maps to
[%R/ 203, %R/ 2°7). Each bin in each folding corresponds to a predicate. This predicate is “1”
for the ith item if and only if f; is included in the folding and the image of f; under this mapping
falls in the corresponding bin. These NH-summaries allow each node u to obtain, for each folding,
each bin, and each decay function g, an approximate decayed count of the items with values that
are mapped by the folding to that bin. (For the special case of BALL, decay function, we can obtain
for each r, an approximate number of items within the r-neighborhood of u that are mapped by
the folding to that bin.)

The value of B is set according to the desired accuracy and communication tradeoffs. Recall
that p is a parameter of our construction which is at least 2. We also define § = 27 + 1. We
have a folding for each j from 0 to p~!logy(R/B). For convenience of presentation we assume that
B/2(r+2) and p~'logy(R/B) are integral.

We now define precisely the set of foldings that we use. In addition to j € {0,...,p 'logy(R/B)},
each folding FOLD, ;s is specified by two more parameters: s € {0,...,5 — 1}, and c € {0,1/2}.
We explain the role of these additional parameters next.

The folding mapping can be viewed as follows. The interval [0, ... R) is partitioned into consec-
utive subintervals of size R/2?/. The ¢ € {0,1/2} determines at what point the partition is started:
if ¢ = 0 the subinterval boundaries start at 0 and if ¢ = 1/2 the boundaries start at R/2°/+! (“half”
subinterval shift) and end at R — R/2°7*1.% The domain of the folding includes a subset of these
subintervals that are spaced exactly S subintervals apart (s determines which of the S possible
subsets of subintervals-spaced-S-apart is included.) All included subintervals are then identified
(that is, a value f; in a subinterval [a1, ag] is mapped to f; — a1). Hence, we obtain a mapping of
the range [0, R) to a range [0, R/277).

6So for ¢ = 1/2 we don’t get exactly a partition of [0, R) but of [R/27T! R — R/2°7+1).

0 R
FOLD 01]!0

L
FOLD 1/2,1,f T O EEEErRrsyhhhy T]

Included points

o
1l
NS N}

— Excluded points

Figure 2: Included parts of the range [0, ..., R) for the foldings FOLDy 1,9, FOLDg 1,1, FOLD /5 9
and FOLDy /911 (p = 2, for simplicity shown with S = 2 although we assume in the analysis that
S=2+1).

Formally, we have that the domain of the mapping is

_ pj+1
FOLD.,s = {x | {%J MOD S = s} :

For x € FOLD, j s we define the image as’
F.;s(z) = (z — cR/27%!) MmoD R/27 .
And the discretization to bins by
BIN,.s(7) = |F. s(r)B2 /R] .

An illustration of a range, and different foldings with the respective included items is provided in
Figure 2. An illustration of the folding mapping is provided in Figure 3.

FOLD 0,1,0
0 R

~ ~
N N ’ ’
~ ~ ’ s
~ ~ ’ ’
~ ~
N N ’ ’
~ ~ ’ ’
~ ~ ’ v
~ ~
~ < 4
~ AR ’
~ ’ ~ ’
~
~ ~ 4
’
~
N ’

S ’

~ ’ ~
~ ’
~

~ ’ ~ 7

~Z S/
AT ..

Figure 3: Included parts of the range [0,...,R) for the folding FOLDg ;0 and the respective
mapping of these parts to [0,...,R/4). (p = 2, shown with S = 2 although we assume in the
analysis that S =27 + 1).

The reason for using two different partitions for each j, s, with ¢ = 0 and ¢ = 1/2 is to obtain
the property that every subinterval of [0, R) that is of length at most R/27*! lies within some

"We use the natural extension of the modulo operation for nonnegative reals.

subinterval of one of the partitions. Formally, we say that an interval [a,b] C [0,R) is intact
by a folding FOLD, ;, if all points in the interval are included in FOLD,;, and the folding
preserves distances within points in the interval. Equivalently, [a,b] is intact if [a,b] C FOLD,
and b —a = F.;s(b) — F.js(a) . Observe that every interval of the form [a,a + R/2°/), where
a MOD R/2pj+1 = 0, is a mazimal intact interval in some folding of the form FOLD, ;.. We thus
have the following property:

Lemma 3.1 Any interval [a,b] C [0, R) such that b —a < R/2P*L is contained in some mawimal
intact subinterval in a folding of the form FOLD, j ..

Lemma 3.2 Consider a mazimal intact interval [a,a + R/2%7) (a MOD R/2°7tY = 0) of some
FOLD, j«. Consider a folding FOLD, j_i s such that [a,a + R/2P7) is intact in that folding, and

let [d,d + R/2°U~1) D [a,a + R/27) be a mazimal intact subinterval of FOLD,; 1. Then,
{BIN.j-15(2)[z € [a,a+ R/2”)} N {BINcj15(2)|x € [d,d + R/2°V"D) \ [a,a + R/27)} = 0

(the set of bins that cover F. ;1 s([a,a + R/2P7)), and the set of bins that cover F.j_1 ¢([d,d +
R/2°U=D)\ [a,a 4+ R/2°7)) are disjoint.)

Proof. Since [d,d + R/Z”(jfl)) is a maximal intact interval of some FOLD, ;_; . we have that

d MoDp R/2PU=D+1 =0, It follows that (a—d) MOD R/2°+! = 0 and that (a+R/2% —d) MmoD R/2PI*! =
0. The bin partition partitions the including interval into intervals of size (R/2°U~1)/B. Tt thus
suffices to show that R/2°7*! is divisible by (R/2°U~1))/B. This in fact holds since

R/ijﬂ Bor(i—1)
(R/Qp(j—l))/B = T opjtl

= B/2 .
(The latter is clearly integral since we assumed that B/2(°*2) is integral.)
The following is immediate from our definitions:

Lemma 3.3 Consider a mazimal intact subinterval I of some FOLD, ;.. Then all points z €
[0,...,R)\ I such that DIST(x,I) < (S — 1)R/2"7 are not included in the folding.

Each node stores an NH-summary for each of the B bins in each folding FOLD, ; , for all ¢, 7,
s. Thus, the communication and storage amount to computing 2BSp ! log,(R/B) NH-summaries.
Consider the viewpoint of some node u. We use the notation

Bc,j,S(bv g9) = Z wu,g(i)
{i|fi€FOLDC,j,S/\BINC,j,S(fi):b}

for the decaying count of items in the bth bin of FOLD, ; ;. From the NH-summaries available at
our node u we can obtain estimates B, j s(b, g) for B, ;s(b,g). (for all g(), foldings, and bins). For
g = BALL, we have

B js(b,BALL,) = |{i € N,|f; € FOLD_ s A BIN. ;(fi) = b}|

(the number of items in the r-neighborhood of u (N,) that are on the bth bin of FOLD,).

4 Computing power sums from summaries

Given v, g(), and w, we show how a node u can use its locally-available estimates on Bc,j,s(b, g) to
estimate Y_; wy 4(1)|fi — V[,
For each j € {0,...,p 'logy(R/B)} we define the intervals

I; = [max{v — R/2°UFV+2 0} min{v + R/2°UTD+2 R}] .

Then for each j € {0,...,p 'logy(R/B)} the node selects one folding of the form FOLD, ;.
(denoted FOLDy, j ;) as follows. For j = 0 it uses the folding FOLDg (for all v). For j > 0 the
node selects a folding FOLD; j s; such that I;_; is intact. (Existence of such a folding is guaranteed
by Lemma 3.1.) We define I; 1 = [a;,a; + R/2"7) be the maximum intact interval of FOLD., j
which includes I; . For convenience, we define Iy = [0,...,R) and I,-1o5, (r/p) = 0. The
following lemma summarizes two properties of these intervals that we need to establish correctness
of the algorithm.

Lemma 4.1 1. Tj is contained in Ij_1 and therefore is intact under FOLDCJ. s -

2. {BIN¢, js; (@)|z € I;} A{BIN¢ s, ()l € [j_1 \ I;} =0 . (I is “ezactly covered” by the bin
partition of FOLD¢, ;s..)

Proof. I; is of size R/2°U+D+1 and T; is of size R/2°UFD. Thus, [I,;| = 2|I;|. Since v is the
midpoint of I; we have

1; C [max{v — 3R/2°U+Y+2 0} min{v + 3R/2°UFVF2 R} C I;_,

(the latter holds since 3 < 2°.) The second property follows from Lemma 3.2.
Algorithm POWERSUM(v, w)

o M <0
e For j =0,...,p ! (logy(R/B)) do as follows:
e Forall b€ {0,...,B — 1} such that
bR/(B2") € (0,...,R/2°7 — 1)\ F, ;. (I;)

(In words, for the bins of the range of F ;.. that cover F. ;. (Ij_1\I;).) do as follows:

o M M+ Bejs;(b,9) | "5 = Fep s, (v)

‘ w

5 Correctness of algorithm POWERSUM

Consider an iteration of POWERSUM, and the respective folding FOLD(cj, j, sj). First note that
items ¢ are classified as either included or ezcluded according to whether they belong to FOLD,, j ..
We further classify included items into either internal or external as follows. Items with value f;
such that F¢, ;s (fi) € ch,j,sj(fj) are internal for FOLD,, ;.. Items such that F.; ;. (fi) €
Feijs;(Li—1\ Ij) (i.e., all other items) are external for FOLD,; js,. So any item is either internal,
external, or excluded. For an iteration 7 and an external item 7, we refer to

Wy (7’) |Fc]- 2J»Sj (fz) - Fc]- 2J»Sj (V) |w

as the contribution of item 4. These classifications are useful as only external items “contribute” to
M during the jth iteration. We will use the following property to bound the approximation error.

Lemma 5.1 Values in Tj,l that are external for FOLDy, j s, are excluded in FOLD¢, | jt1.s;,,-

Proof. Values in Tj,l that are external for FOLDC]. J.s; are exactly those in Tj,l \Tj. So we have
to show that Tj,l \Tj is excluded by FOLchH,jH,sHl- From Lemma 3.3, all values that are not
in T, and are of distance at most (S — 1)R/2°U+1) from I, are excluded under FOLDc¢; ., j+1,5,41-

Since I; is of size R/2°U+D+1 and v is the midpoint of I; we have that all values that are of distance

at most
(S — 1)R/2°UTD 4 R/2rU+D+2 — (4§ — 3)R/20U+1)+2

from v and are not in Tj are excluded.
Since S > 2” 4+ 1 we obtain that (4S5 —3) >4 -2” and thus

(48 — 3)R/2°UT+2 > R /20 |

Recall now that the interval I;_ is of size R/2?/ and contains v, thus it must be the case that all
points in I;_1 \ I; are excluded by FOLDc, ., j+1,s,,:-

external =———=
internal

FOLD *, j* ¢

range of FOLD *, j+], f I

Figure 4: A folding selected according to some v (B = 16, p = 2, and thus B2-(°t2) = 1). The
figure shows the value v, Tj_l (the maximal intact interval in FOLD, ;, sj) along with the histogram
partition to B = 16 bins. The figure also shows the interval I; (which is 1-bin wide around v), and
Tj (the maximal intact interval in FOLD,,,, jy1,;,, that contains I;). As should be I; C Tj C Tj,l
and I aligns with the bin partition induced on I;_;. The figure also shows the ranges of values
that are classified as internal and external.

We conclude the correctness proof with the following two lemma. Let

Ti= D wllFen(f) = Fepn I
i external in
FOLD., .,
be the non-discretized contribution during iteration j.

Lemma 5.2 The total contribution made to M during iteration j is a (1+,3)(1:|:2pB+2) -approzimation

of the quantity T}, where (1 +) is our error in the decaying sum estimates.

Proof. Observe that only bins of external items and all bins with external items contribute to our
estimate among the bins of FOLD¢, js,. Thus, the error stems from two reasons, first we have the
weight of each such bin only up to (1 +) accuracy and second for item in a bin we sum up not
the exact difference |F.; ;s (fi) — Fe, js; ()| but this difference where F¢, ;5. (f;) is rounded to a
bin boundary. The first component of the error clearly contribute a factor of 1 4+ § to our overall
error.

10

We next bound the error introduced by rounding to bins. For j = p~!log, R/B the range of
FOLD, js; has B values and the histogram captures exact values, thus the contribution is pre-
cise. Otherwise, since item i is external, i ¢ I; and therefore FOLD,; ;s (fi) — FOLD¢, ;s (v) >
R/2°UG+1)+2: Rounding to bin boundaries gives an additive error term of (R/2°7)/B in our knowl-
edge of FOLD,; js;(fi). Thus, the relative error we get in |F¢, j . (fi) — Fe; s, (v)“ is bounded by
(14 2012/B)>.

Lemma 5.3 3, T} is an (1 +27“PT2 /(1 — 27/%))- approzimation of 3_; w(i)|f; — v|*.

Proof. We now consider the contribution of each item i to 3, T (that is, the sum, over j
where ¢ is external in FOLDy, ;5,, of the contribution of i to T;.) For each item i, we define
J(i) € {0,...,p 'logy(R/B)} be such that f; € TJ(i),l \TJ(Z-). Recall that an item 4 is external in
the jth iteration if and only if i is included in FOLD,, ;. and

Fe; s (fi) € Fep s, (L \ Tj) -

In particular an item i is external in the fold FOLD Moreover, since the intervals Tj

IOTIORFON
are nested, iteration J () is the first iteration in which(2che ite(nr)l ¢ is external. Note also that the
interval between f; and v is intact in iteration J(7) and is not intact in subsequent iterations.

Each item 7 contributes in several iterations. The first iteration it contributes in is iteration
J(i). Since the interval between f; and v is intact in iteration .J(¢), the contribution of 7 in iteration
J (i) is exactly w(i)|(fi —v)|“. We next argue that its contributions in subsequent iterations are at
most some constant fraction of w(i)|(f; — v)|“.

It follows from the definition of the intervals I; that the contribution of 7 at iteration J() is
at least w(i)(R/2°(/()+1)+2)¥ Lemma 5.1 states that external items in an iteration are excluded
in the next iteration. Thus, an item i does not contribute in iteration J(i) + 1. In every iteration
4 > J(i)+2 the contribution of 4 is at most w(i)(R/2°7)¥ (since the size of the range of FOLD (, j, %)
is R/2P7). Since the upper bound on the contribution of i in each iteration j > J(i) + 2 decreases
by a factor of 27°% we obtain that sum of the contribution of ¢ in all these iterations together is at
most

w(i)(R/gP(J(i)-i-?))w(l 4o (2—pw)2 F)
< w(i)(R/2PVD+2yw /(1 —97rwy

Therefore the relative error contributed by the contribution of i in iterations j > J(i) + 2 is at
most
(RI2VO)1~ 20)

_ 9—wpt2w _ o—pw
(R/Qp(J(i)+1)+2)w =2 /(1 =2) -

Combining the two lemmas, the total approximation factor is
(14 B)(1 +2°72/B)“ (1 + 22 P9 /(1 —27/)) .

Assume we are interested in summaries that are good for a certain € and w € [wg,wp]. The second
part of the approximation factor (contributed by Lemma 5.3) is decreasing with w, thus we shall
choose p > 2w; ! large enough such that 21+(2-P)wa < ¢, The first part of the approximation factor
(contributed by Lemma 5.2) is increasing with w. By choosing a sufficeintly large B we can have
(1+2°F2/B)% < (1+¢).

11

5.1 When values are unrestricted

Our presentation assumed that an upper bound R on the maximum value M is known to all
nodes. This assumption can be dropped by using the sum .S of all values in the system. Then we
can use R = S (The sum S is at most nM, and thus log S < logn + log M.) Alternatively, we can
perform log(Mn/S) count computations, where the ith computation counts the number of values
that are larger than (S/n)2’. As a result, we obtain an estimate on M within a factor of 2.

Another natural question is whether we can remove the dependence on R (and allow for expo-
nentially large range of values.) A simple construction (that mimics one given for spatially-decaying
sums [5]) shows that the dependence is inherent.

6 Central moments

We now show how approximate values of Mj, / for even integral w > 2 can be retrieved from the
summaries. For brevity, since clear from context, we omit the decay function g from the subscripts.

The challenge in approximating A} is that p is not known to us. It can be approximated
within a relative error using the sum and count aggregates, but a relative-error estimate on y is
not sufficient for obtaining a relative-error estimate on Aj;.

We start with some definitions and lemmas.

One-sided power sum about v is a weighted sum of all values that are larger (or smaller) than v.
That is, AT = Silfisy WA fi—v]¥ or AYT =3 5,<, w(i)| fi—v|*. Absolute power sums and pure
power sums with even w can be expressed as the sum of the two one-sided sums AY = A" 4 AW~
whereas the pure power sums with od w are the difference MY = A%+ — AY—,

Lemma 6.1 A slight modification of algorithm PowerSum allows us to obtain approximate values
for each one-sided sum within an additive error term of €A;,.

Proof. The modification amounts to simply considering a subset of the bins that cover only the
part of Fe, ;. (Ij_1\1;) that is larger (for f; >) or smaller (for f; < v) than F., j,(I;). Observe
that this is the same additive error we obtained when approximating the sum Ay = >, w(i)|fi —v|*,
only that it does not necessarily translate into a small relative error in the one-sided case.

Corollary 6.2 For each v and w € [wq,wp], MY can be estimated from the summaries to within an
additive term of eAY.

Proof. MY is a sum or difference of two one-sided sums. Each one-sided sum can be estimated
to within an additive term of (e/2)Ay. Thus, their sum or difference can be estimated to within
an additive term of €A¥. In particular, M) = W (u — v), thus 1 — v can be estimated within an
additive term of € >, w(i)|fi — v|/W.

An important ingredient we need is obtaining a value v, such that the absolute w-power sum
about v is within some constant factor of the respective absolute central power sum. That is,
Ay = O(A}). It is easy to see that an approximate (with relative error) mean does not necessarily
possess this property, but fortunately, (as proved in the following lemma) an approximate median
will do. Folklore knowledge is that a random value (drawn according to the weights w(7)) has
a constant probability of being an approximate median, and this probability can be arbitrarily
increased by selecting the median of a constant number of random samples. An efficient algorithm
for obtaining such spatially-decaying random samples is given in [5].

12

Lemma 6.3 Let m be such that Zimgmw(i) > cW and Ei\fime(i) > cW that is, the weight of
items with value that is at most m is at least cW, and the weight of items with value that is at least
m is at least c(W.) Then
An < ow
AW <21 —¢)/c.
m

Proof. Assume wlog that 4 > m. Consider now items and their contributions to the power
sums Ay, and A}, All the values that are larger than m + 2(p — m) have the property that their
contribution to Ay, is at most 2¢ times their contribution to Aj;. We next consider items with
value at most m. Since they are closer to m than to p, their contribution to AY, is smaller than
their contribution to Aj;. The total contribution of these items to Aj; is at least ¢cW |y —m|“. Thus
A, > cWp —m|?. We next consider values in the interval (m,m + 2(u —m)]. Since the total
weight of items with values at most m is at least ¢WW, the weight of items with values in the interval
(m,m + 2(u —m)] is at most (1 — ¢)W. So the contribution of the items in (m, m + 2(u — m)] to
A, is at most 2¢(1 —)W |u — m|?. Tt follows that Ay, /A} < max{2,2“(1 —c)/c} <29(1 —¢)/c
(note that we always have ¢ < 1/2).

We start with an algorithm for the variance (w = 2). Simple manipulation shows that for any
constant v we have

A= w(@i)(fi—v)? = AL+ W(p—v)>.
(2

Thus, the dependence of the quadratic sum A?, on v is parabolic with minimum at v = u. We are
able to determine (within a relative error) an approximation of A2 for any given v, and would like
to use it to estimate Ai.

We will estimate AZ using the relation

A2 =A—W(n—v).

If we can pick a value v and estimate each of the two terms A% and W (i — v)? within an additive
term that is at most € Ai, we can estimate their difference Ai to within a relative error of (1 £ 2¢').

Recall that A2 can be estimated with small relative error. It follows from Lemma, 6.3 that if v
is an approximate median then A% = 3, w(i)(f; —v)? < kAZ for some constant k. Since A2 < kAi
then relative-error estimate on it is in fact an estimate with an additive term of ekAi. If we can
choose € < €'/k we obtain an estimate within the desired additive term on AZ.

It remains to bound the error on an estimate of W (u—v)?. We use the method of Corollary 6.2 to
obtain an estimate ;. — v for the quantity p— v that is within an additive term of A < €3, w(i)|f; —
v|/W. We then use W (u — v)? as an estimate for the term W (u — v)2. The additive error of this
estimate is at most

(3) W(p—v|+A? =W —v)?=WA2+2WA|u—v| .

We consider two cases, and argue that in either case we obtain an additive error of € AZ on our

estimate for W (u — v)2.

o If
p= v < S wli)lfi — oI/

2

then using Equation (3), our additive error on the estimate on Wy — v)* is at most

WA(A + 20— v]) < Wele + (X wi)lf; — vI/W)” < 3e(3 wi)|fi — v])2/W .

7 7

13

We now use the relation that for any Bi,..., By >0 and Ay,..., Ay >0,
(4) D AB)?/ Y A <Y AiB;
8 Thus, using Inequality (4) with A; = w(i) and B; = |f; — v|, we obtain

Q- w@)fi —v)?/W < Zw(i)(fi -v)?,

)

and therefore,
3e(D_wli)|fi — v|)?/W < 3eA .

)

Since A% < kAZ, we obtain that the additive error is at most 3ekAi.

e Otherwise, we have that |u —v| > Y, w(i)|fi — v|/W . Thus,

A< e wli)lfi —vl/W < elp vl

Thus, our estimate on W (u — v)? has in fact a relative error of (1 + €)2. Since W (u — v)? <
(k — I)AZ, the additive error is at most 3e(k — I)AZ.

We now show how to obtain (approximate) values of A%(u) for general even values of w.
We will need the following inequalities:

Lemma 6.4 For any set of integers i; > 1 (j = 1,...n) we have

LAY < WA
Proof. We apply Chebysheuv’s integral inequality ([9] page 1092) which states that for any set of non-

negative, integrable, monotone (all non-decreasing or all non-increasing) functions hq(x), ... hy(z)
we have

b b
., / hi(@)de < (b—a)™! / (I, () d .

The claim will follow by applying this inequality with the following parameters: Let W = " w(7)
as defined earlier and assume wlog that |f; — v| are ordered by magnitude. Let the step function
hj(z) be defined on the interval [0, W] as follows, h;(z) = |f; —v|¥ for z € [E,Ki w(k), Yop<i w(kz))
Note that it follows from our ordering assumption that the functions h;() are non-decreasing, as
needed for the statement of the inequality.

It is well known that (using the Binomial transform) each central moment can be expressed as
a sum of powers over raw moments about any value (see [10], page 146):

M w w 1 &
(5) WH = Z < i) (_1)w—k(%)w—k%)
k=0

8this can be derived using Chebyshev’s inequality (see proof of Lemma 6.4), to see it directly, observe that for
fixed sums ZZ A; and Ez A;B;, the sum EZ A;B? is minimized when B; = (ZZ Al)/(zZ A;B;) for all j, thus we
only need to show that (3°. A;B;)*/ Y. Ai < Z]. A; (30, A)?/ (X2, AiBi)?, which trivially holds.

14

In terms of power sums we obtain

My = W (=1)(1 - w) (ML)
w
—(w—F w —k/palyw—Fkpngk
(6) +y wl >(1)(—1)“’ (My)*™"M,, .
k=2
In particular,
2 _ 1\2 2
M# - _(My) /W+MV
M = My —3(ML)* /W3 —AMIML /W + 6M2(M),)? /W2

We let v be an approximate median m as in Lemma 6.3. We estimate the central moment through
the polynomial sum of raw moments about v = m (Equ. 6), by plugging in, for each M} , our

estimated quantity M?, and for W, the (1 = €)-approximate W.
Lemma 6.5 The additive error we obtain in our estimate is O(€A})).

Proof. The polynomial sum (Equ. 6) has a constant number of terms, where each term in the sum
has the form of a constant times W~“=®)ME (M!)¥=F (for w > k > 1), it thus suffices to bound
by O(eA‘;j) the error introduced by the approximation of each such term. In fact, using Lemma 6.3,

it suffices to bound the error of each term by O(eA},).
Consider the error in a single term.

(7) I, (M,)2 = W R, ()

m

Since |W — W| < eW we obtain that
W=k — =@k & max{(1 +¢)~ @ — 1,1 — (14 ¢~ @R .

For e < w1,
max{(1+¢)~ @ 11 - (1+¢) @} < 2we .

Therefore, using W=~ e W=(@=k)(1 4 2we) we obtain that the Expression 7 is at most
M (M,) — M, (M,)=

m

< (1 4 2e0)W—(@=H)

We bound the difference o
M (ML) — M (i)

—

Denote AF = MF — MF . The difference can be rewritten as

k k
m m

(M3, + AR (M, + A7) — M (M,)<
If we expand this expression the term MF (M!)¥=F cancels out and we obtain a polynomial
P(Mﬁ%, M}n, Ak ALY that consists of a positive linear combination of products of Mﬁl, M}n, Ak
and Aj,. Recall now that [Mj,| < A}, and that |AL | = [M}, — M;,| < €A}, (for all i) (from Corol-
lary 6.2). Therefore, if we replace each appearance of M?, by A’ and each A!, by €Al we can only
increase the absolute value of this polynomial, thus

P(AE AL eAE eAl) > [P(ME ML AR AL

15

We next observe that (from the definition of the multi-variate polynomial P())

= (Am + eAR) (Ag + eAn) 78 — AL (Ag) 7
= ((L+ ¥ 1 = DAL (A,) "

Using Lemma 6.4, we obtain that the difference is at most
< (14 e =AY W+,

To summarize, we have that the error (Expression 7) is bounded by (1 + 2we)((1 +€)¥ — 1)A
2weAY, (since € < w™h)

7 Extensions

We point out some extensions of our results.

7.1 Beyond power sums

Using our (1 + €)-approximate absolute power sums we can also approximate any fixed expression
that constitutes of powers, products, ratios, and positive linear combination of Afj We next
discuss approximating the sum Y, w(¢)h(f; —a) for more general functions h() by examining where
properties of h() entered the analysis. We consider an application of our technique with fold widths
dy > dy > ---. We bounded the cumulative error from accounting for the same value in different
foldings by guaranteeing that for each item, its largest contribution subsumes all contributions that
occur at smaller fold widths. An obvious requirement is that h() is increasing with |z|; a finer
(approximate) requirement is that h(d;) > >=,5; const (d;) and in particular h(d;—1) < ah(d;)
for some 0 < @ < 1. On the other hand, the number of bins in the partition of each fold-width
should be €(d;/d;_1), since this partition should allow us to “separate out” the internal items.
For polylogarithmic-size summaries, we need that both the number of different fold-widths and
the number of bins B are at most polylogarithmic. By combining the constraints that d;/d; 1 =
O(polylog) and h(d;)/h(d;—1) > 1 + cnst. we obtain that the growth rate of () should be at least
polynomial (or slightly sub polynomial). We next upper-bound the growth rate of h(). If the
number of fold-width is polylogarithmic, we have that d;/d;—1 > (1 + 1/polylog). We aggregated
values in the range of each folding into a histogram with uniform-size bins®. Thus, the number
of bins is Q(max; log(h(d;)/h(d;—1))). By combining these constraints we obtain that the growth
rate can be at most polynomial (or slightly super polynomial). Thus, our technique extends to
functions h() that are increasing and bounded below and above by polynomials (or slightly super
and sub-polynomials); accommodating slower or faster growth would incur penalties in the bounds.

7.2 Higher dimensions

We now consider the case when the item values f; = (fi1,..., fia) are vectors in R%. The query
points are v = (v1,...,v4) € R%. The aggregate functions are defined by constants pi,...,pg > 0

9The uniform size is needed since each fold width should cover values v that belong to a sufficiently large fraction
of the range.

16

and p > 0 (from a fixed range) and are

p—l

d
fi—vil= | D I1fis —vlP

i=1

(in particular, this generalizes L, norms). We are interested in summaries that would yield ap-
proximate values of 3, w(i)||fi — v||).!° We sketch the extension of our d = 1 construction to
d > 1. The size of the summaries is polylogarithmic in the number of items but the dependence
on the dimension d is exponential. Each of our d-dimensional foldings maps the domain into a
smaller d-dimensional range cube. The widths (edge-lengths) of these range cubes are exponentially
decreasing. For each width we use (25)? different foldings. For each possible (out of 2¢) selection of
different zero or half tile-width shifts we consider a partition into sub-cubes according to the width.
For each partition, we derive S? foldings, where each folding includes a subset of the sub-cubes
that are spaced S sub-cubes apart. Each folding then maps all included sub-cubes into a range
cube of the respective width. The range cube of each folding is then partitioned uniformly into B?
sub-cubes (bins), and each bin corresponds to a predicate. We thus use O((2BS)¢ log R) predicates.

7.3 k-medians

We next consider summaries that for any set of points v, ..., v, obtain an approximate value of
F(vi,...,vg) = >, w(i) min®_, || f; — vj||. This is relevant for computing the k-median defined as
argmin,, ., F(vi,... ,1/;.3).171 We can extend our techniques to perform this task with polynomial
dependence on k (and exponential dependence on d). We sketch the extension for d = 1 (it is
similar for d > 1). Given the points v4,..., v, consider a value f;, the v point closest to it and
other points that are about as close (within some constant factor). The value f; will be accounted
for (make the largest contribution) in a folding of the appropriate width (order of the distance
between f; and the closest v-point to it) that contains f; and all these close v-points in an intact
subinterval (the contribution will be according to the closest v-point in the interval.) An issue
we need to be careful about is preventing a value f; from making too large a contribution when
considering a “far” v point while it is actually close to another point (and thus its total contribution
should be small). When accounting for values close to v; we would thus need a folding around v;
such that for all v points that all values that are closer (by more than a constant) to any of the
points v; (7 # 4) than they are from v;, are excluded. Given this property, we can apply our basic
algorithm for each of vy, ..., separately and take the combined contribution. Because of this
mutual exclusion, we could still argue that each value f; has only one “large” contribution which
corresponds to miné?:l || fi — v;]| and all other contributions are dominated by it.

To obtain this property we start with the base set of foldings constructed for £ = 1 and replace
each such parent folding with a set of foldings that includes only a subset of the included set of
subintervals in the parent folding. Our problem can be abstracted according to the following lemma.

Lemma 7.1 We have a base set of F = O(log R) elements (included subintervals). There is a
collection of subsets over the elements of size logarithmic in F (and polynomial in k). such that for
any choice of a single element and k — 1 others, there is a subset that contains this single elements
and excludes the k — 1 others.

'%For each such “norm” it is interesting to consider the median argmin, Y w(i)||fi — v||. Since our summaries
can obtain an estimate for any v, they can be used to estimate this median.

1 Such summaries must preserve sufficient information to obtain an approximate k- median, but we don’t address
the issue of how it is retrieved.

17

Proof. To see our claim for k¥ = 2, each subset corresponds to a bit in the binary representation of
an index of an element. We then include each element in a subset if it has “1” in the corresponding
bit of its binary representation. Thus, any ordered pair of element will have at least one subset
which contains the first and excludes the second.

We argue the extension for k£ > 2 via a more general (but standard) argument. Consider the
following mechanism of selecting subsets. Each subset is selected via random selections where each
element is included with probability 1/k. Then the likelihood that a particular choice is covered by
a particular subset is (1/k)(1—1/k)¥=! = O(1/k). There are O(F*) different choices. Hence, use of
O(k?log F) different subsets would be sufficient to guarantee that with some constant probability
all choices are covered. For each parent folding we treat included subintervals as elements and
select each refined folding according to a subset. An included subinterval is in the refined subset if
and only if the element is in the subset. For fixed k, we thus increase the number of foldings by a
factor of O(loglog R).

For each width we consider all the v points and select foldings are follows. For each v point we
find a parent folding that contains it and all the points that are order of the width close to it in
an intact interval. For other v-points, we associate each point v; with the closest included interval
in the parent folding. We then select a refined folding which excludes all these subintervals except
for the one that includes our v point (and possibly other points that are close to it). All the values
that are close to any of the v points in the interval are considered “internal.” All other values are
accounted for according to their distance from the closest v point in the interval.

The k-median problem on data streams had been considered by Charikar, O’Callaghan, Panig-
raphy [3] who gave a polylogarithmic storage algorithm with linear dependence on k for any metric
space. The problem on sliding windows was considered by [2] and left open the existence of polylog-
arithmic space algorithms. Our result is not directly comparable: On one hand, spatially-decaying
aggregation generalizes sliding windows on data streams and non-decaying data streams. On the
other hand, we solve a more restricted problem and address only fixed values of d.

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream
systems. In Proc. of the 2002 ACM Symp. on Principles of Database Systems (PODS 2002).
ACM, 2002.

[2] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining variance and k-medians
in data stream windows. In Proc. of the 2002 ACM Symp. on Principles of Database Systems
(PODS 2003). ACM, 2003.

[3] M. Charikar, L. O’Callaghan, and R. Panigraphy. Better streaming algorithms for clustering
problems. In Proc. 35th Annual ACM Symposium on Theory of Computing, pages 30-39.
ACM, 2003.

[4] E. Cohen. Size-estimation framework with applications to transitive closure and reachability.
J. Comput. System Sci., 55:441-453, 1997.

[5] E. Cohen and H. Kaplan. Spatially-decaying aggregation over a network: model and algo-
rithms. In SIGMOD. ACM, 2004.

[6] E. Cohen and M. Strauss. Maintaining time-decaying stream aggregates. In Proc. of the 2003
ACM Symp. on Principles of Database Systems (PODS 2003). ACM, 2003.

18

[7] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding
windows. SIAM J. Comput., 31(6):1794-1813, 2002.

[8] P. B. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding windows. In Proc.
of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 63—72.
ACM, 2002.

[9] I. A. Gradshteyn and I. M. Ryzhik. Tables of Integrals, Series, and products. Academic Press,
San Diego, CA, 6 edition, 2000.

[10] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill Book
Company, New York, second edition, 1984.

19

