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Abstract

We formalize the problem of maintaining time-decaying aggregates and statistics of a data stream:
the relative contribution of each data item to the aggregate is scaled down by a factor that depends on,
and is non-increasing with, elapsed time. Time-decaying aggregates are used in applications where the
significance of data items decreases over time. We develop storage-efficient algorithms, and establish
upper and lower bounds. Surprisingly, even though maintaining decaying aggregates have become a
widely-used tool, our work seems to be the first both to explore it formally and to provide storage-
efficient algorithms for important families of decay functions, including polynomial decay.

1 Introduction
The advent of high speed communication networks and massive transient datasets has made the streaming
data model and stream management systems the focus of much recent work (see [1] for an excellent survey).
In the data stream model, data arrives sequentially and is processed by an algorithm whose workspace is
insufficient to store all the data, so the algorithm must process and then discard each data item. The algorithm
maintains a summary whose storage requirement is considerably smaller than that of the stream. Using this
compact summary, the algorithm is able to answer queries about the data stream.

In many applications, however, older data items are less significant than more recent ones, and thus
should be discounted accordingly. This is because the characteristics or “state” of the data generator may
change over time, and, for purposes such as prediction of future behavior or resource allocation, the most
recent behavior should be given larger weight. The rate of decay is captured by a decay function, which is
a non-increasing function—the weight of each item is the decay function applied to the elapsed time since
the item was observed.

One of the most fundamental queries on a stream of values is a sum, or, equivalently, an average.
Consider a stream of nonnegative integers. It is not hard to see that exactly maintaining the sum (or average)
requires storage of bits (where is the value of the sum). Work of Morris [16] and subsequent
folklore work shows how to maintain an approximate value of the sum using only storage
bits. A time-decaying sum or (similarly, average) of the stream is a weighted sum according to a decay
function.

A preliminary version of this paper appeared in [7]
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Depts. of Mathematics and EECS, Univ. of Michigan, Ann Arbor, MI, USA. Email: martinjs@umich.edu. Part of this
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1.1 Applications

There has been an abundance of applications work with time-decaying sum or average aggregates. We list
some examples we are aware of. The listed applications use time-decaying averages to estimate network
delay, congestion, or connection activity, but many other applications are conceivable.

The Random Early Detection (RED) protocol. RED is a popular protocol deployed in Internet
routers for congestion avoidance and control. RED uses the weighted average of previous queue
lengths to estimate the impending congestion at the router; the estimate is then used to determine
what fraction of packets to discard [14, 11].

Holding-time policies for ATM virtual circuits. Circuit-switched data connections have an associ-
ated cost of being kept open; data transfers are bursty and intermittent and, when a data burst arrives,
it incurs smaller delay when the circuit is open. Thus, when there are multiple connections, it is im-
portant to assess the anticipated idle times (time to the next data burst) of each circuit and to close first
those circuits that have longer anticipated idle times. This can be done using a time-decaying weighted
average of previous idle times [15]. A similar model applies to maintaining open TCP connections at
a busy Web server [6].

Internet gateway selection products. Multiple Internet paths are available to each destination host
and the product needs to assess the reliability of each path in order to facilitate a better selection of a
path. A time-decaying average of previous measurements can be used as a measure of path quality [2].

Maintaining statistics about usage patterns of AT&T telecom customers. In this application, a
summary is maintained per field on each of around 100 million customers; thus, optimal balancing of
information value and available storage is very important [8].

1.2 Decay functions

Much of the applications of time-decaying aggregates predate formal analysis of stream algorithms, and the
most commonly used decay function is Exponential decay, the only natural alternative for which simple and
efficient algorithms were known. The exponentially-decaying weighted average can be maintained easily in
a single counter, , by the formula , where determines the rate of decay
and is the new data value. Under this formula, the contribution to the weighted average of a data item
value observed time units ago is times its original value. The required storage for approximately-
maintaining this value is , where is elapsed time.1

Another natural model for discounting older data is Sliding Windows. For a parameter , we want to
maintain the count of 1’s (or sum of values) over the last time units. It is not hard to see that maintaining
an exact count requires storage bits, as the algorithm must track the most recent data items exactly.
Sliding Window decay has recently been addressed in [9], where the authors consider the problem of main-
taining an approximate count. They give an algorithm (the “exponential histogram,” EH) and a matching
lower bound for maintaining this count using storage bits. Further work on maintaining sliding
window decay for distributed streams was performed by Gibbons and Tirthapura [12].

Note that there is an exponential gap between the storage required for approximately maintaining a
non-decaying sum ( ) and the storage required for Exponential or Sliding-Window decaying

1This bound holds for 0/1 streams, but extends in a simple way to streams where items have values that are polynomial (in
elapsed time). This assumption also holds for bounds that are stated in the sequel.
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sums. In turn, Sliding Window decay ( storage bits) is quadratically worse than Exponential
decay ( bits).2 These differences in required storage can be very significant for applications.

We have, so far, discussed two particular families of decay functions: sliding windows and Exponential
decay. The storage requirements of both families are well understood and time-decaying aggregates accord-
ing to these functions can be approximately maintained with polylogarithmic storage. We next identify some
desired properties of decay functions. We then argue, using examples, that these two families are “insuffi-
cient:” First, they do not possess some intuitive properties, and, second, they do not provide a rich-enough
class of decay rates, as the desired rate of decay for a particular application depends on the time scales of
correlations between values. Both sliding windows and exponential decay discount older data very severely.
Intuitively, we expect the significance of an event indeed to decay with elapsed time, but also to be larger
for a more severe event. For different applications, we would like to be able to tune the balance of severity
with time-decay.

As an illustrative example, we consider a time-decaying aggregate of past performance as a measure of
availability of network links. We consider two links (see Figure 1), L1 and L2. Suppose that link L1 fails
for a 5-hour duration and, 24 hours later, alternative link L2 experiences a 30-minute long failure. The two
links were otherwise reliable and no more failures are observed later on. We would like to compute online
simple numerical ratings that capture the relative reliability of the two links. The link L1 experienced a more
severe failure event than L2, but less recently than L2. One would imagine that the initial rating of the two
links should depend on the application and general properties of the failure patterns and the desired balance
between the severity of an event and the rate of time-decay. Thus, one may initially want to deem one of the
links as more reliable or deem both of them to be similarly reliable. We would like to have a rich enough
range of decay rates to support these possibilities. Regardless of the initial rating, as time progresses, and
the time difference between the failure events become small relative to elapsed time, we expect that L2,
which experienced a less-severe failure, to emerge eventually as more reliable than L1.

Consider first using a sliding window decay function for our two links. A small window size would
completely discount the failure event experienced by L1, thus viewing it as a more reliable link, and later
on as an equally-reliable link. A larger window size will provide a view that changes from one that deems
L2 to be much more reliable than L1 to one that deems L1 to be much more reliable. This contradicts our
expectation that the relative reliability rating of L2 increases as time progresses.

We next consider using an Exponential decay function. Exponential decay has the property that the
relative contribution of both failure events remains fixed through time, and, thus, its “view” on the relative
reliability of links remains fixed as time progresses. So depending on the decay parameter, either L1 or L2
will be consistently viewed as the more reliable link. Again, this view contradicts our expectation.

In particular, no member in these two families can provide a view where first L1 is rated as more reli-
able and then L2 emerges as more reliable. We can now ask which decay functions fulfill these intuitive
expectations? In particular, we need decay functions that allow the weights of two items to become closer
as time progresses. We noted above that this property does not hold for Exponential decay or sliding win-
dows. Smooth subexponential decays do have this property, and one particularly appealing family of decay
functions is polynomial decay, where the weight given to a data item is inverse-polynomial in elapsed time.
These functions can also tremendously expand our ability to tune the rate of decay. As far as we know,
however, until now, there was no known method to maintain aggregates with these decay functions with
polylogarithmic storage.

2In the sequel we define to be the minimum of elapsed time and the minimum value after which the decay function nullifies.
Exponential decay and window size are compared under this unifying metric.
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Figure 1: Relative reliability rating for the links L1 and L2. The figure shows the more reliable link as a
function of time when using different decay functions.

1.3 Our contributions

We now summarize the main contributions of our work.

We formulate the problem of maintaining time-decaying aggregates for general decay functions and
identify desired properties of the family of available decay functions. We argue that these properties
are not satisfied by decay functions with known storage-efficient algorithms (namely, Exponential and
sliding-window decay) and identify new classes of decay functions that fulfill these properties.

We show that time-decaying sums (and averages) under any decay function can be approximately
tracked using storage bits; this is the first polylogarithmic-storage approximation algo-
rithm known for general decay functions. Our algorithm builds on the Exponential Histogram tech-
nique [9]. Interestingly, this result shows that, in a sense, sliding windows, for which a matching lower
bound of is known [9], are the “hardest” decay functions for maintaining time-decaying
sums.

We give a different algorithm for maintaining time-decaying sums for decay functions with certain
properties. The algorithm maintains polynomial decay (approximately) with storage of
bits. This result shows that polynomially decaying sums can be tracked nearly as efficiently as Expo-
nentially decaying sums.

We give a nearly-matching lower bound of storage bits for maintaining polynomially
decaying sums.

We define time-decaying aggregation and explore algorithms for other interesting aggregates includ-
ing random selection, norms, and variance. Algorithms for some of these aggregates were devel-
oped in the more restricted sliding-window time-decay model [9, 1] and in the more general spatial-
decay model [5, 4] (that was introduced in subsequent work). We discuss adaptations of these algo-
rithms for the time-decay model and general decay functions.

The paper is structured as follows. We start in Section 2 with preliminaries and then, in Section 3, discuss
some specific decay functions. In Section 4 we show how to use cascaded computation with an Exponential
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Histogram to approximate general decay functions. In Section 5 we develop a different algorithm, weight-
based merging histogram (WBMH) and show that it performs better than cascaded Exponential Histograms
on some families of decay functions that include polynomial decay. In Section 6 we give the lower bound
on the storage requirement of any algorithm that approximates polynomially decaying aggregates. Beyond
sums and averages, in Section 7 we discuss other basic time-decaying aggregates including norms,
variance, and random selection.

2 Preliminaries
Consider a stream of data items , where is the arrival time and is the value of the th item.

A decay function is a non-increasing defined for . We use to denote current time. At
time , the weight of item is and the decaying value of the item is . For simplicity
of presentation, we assume that time is discretized and obtains integral values. We will use the notation

as the sum of values of items obtained at time . Below we define the two main decaying
aggregates we consider: the time-decaying sum and the time-decaying average of the stream under
the decay function .

2.1 Time-Decaying Sum

Problem 2.1 Decaying Sum Problem (DSP). The input to the problem is a stream of data items and the
goal is to estimate, at any current time , the time-decaying sum

We assume that the values are in , as the results can be easily generalized to polynomial values
(as in [9]). We refer to the DSP problem with binary values as the Time-Decaying Count Problem (DCP).

As with traditional streaming applications, our goal is to obtain an estimate of at any time while
using a small amount of memory. We are interested in -approximate estimates, where is fixed.
In other words, we are interested in obtaining such that .

2.2 Time-Decaying Average

The decaying average of a stream is a time-decaying weighted average of observed values.

Problem 2.2 Decaying Average Problem (DAP). The input is a stream of data items, and the goal is to
estimate at any time , the time-decaying average of the stream, defined as

Each item in the decaying average is weighted according to the decay function. The decaying average is
especially useful if , in which case the decaying count may also go to infinity.

Observe that the numerator of the decaying average is a decaying sum of the stream and the
denominator of the decaying average is a normalization factor by the sum of the weights and essentially is
a decaying count of the stream . It follows that an approximate weighted average can be obtained
from the corresponding approximate decaying sum and decaying count. Therefore in the sequel, we focus
on algorithms for the more basic decaying count problem.
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2.3 Histograms and Metrics

The main performance metric we use is the amount of storage used by the algorithm as a function of ,
where is the defined to be the minimum of elapsed time since the arrival of the first data value and

(the maximum value for which the decay function is positive).
The algorithms we discuss aggregate the items into a histogram. Each bucket of the histogram aggregates

all items that were observed in some time interval. Thus, each bucket of the histogram has a start-time and
an end-time, and we refer to the difference between the start and end times as the time-width of the bucket
and to the sum of values of all items in the bucket as the count-width of the bucket. Buckets are merged and
discarded in a particular way which depends on the algorithm. When two consecutive buckets are merged,
the new bucket inherits the start-time of the earlier bucket, the end-time of the later bucket, and count-width
which is the sum of the count-widths of the two buckets.

Different algorithms may use time- or count-based criteria to place the boundaries of the buckets. The
Exponential Histogram algorithm is such that the count boundaries of the buckets are independent of the
stream, but the time boundaries vary. We will present another algorithm, weight-based merging histograms
(WBMH), where the time boundaries are independent of the particular stream but the count boundaries vary.

Boundaries that are independent of the stream are useful for reducing the amount of storage needed for
the histogram, since the boundary values do not need to be stored for each stream. This distinction between
time and count, and which boundaries are stream-independent, turns out to be important. The total storage
we require is determined by the number of buckets we use and the storage that is needed for each bucket.
The WBMH algorithms we explore can maintain an approximate count instead of the exact count-width
of each bucket. In contrast, approximate tracking of time-boundaries seems to be problematic, as a small
deviation in a boundary can lead to a large deviation in the value of the decaying sum.

3 Decay functions
We describe some families of decay functions that are of particular interest.

3.1 Exponential decay EXPD

For a parameter , . With EXPD, the relative significance of each measurement
decreases exponentially with elapsed time. EXPD is commonly used in practice. One of the appeals of
EXPD is that it can be maintained easily using

EXPD EXPD (1)

We explore the storage requirements of EXPD.

Lemma 3.1

Exact tracking of EXPD requires storage bits.

Approximate tracking of EXPD requires storage bits.

Proof: We start with exact tracking. We show that a binary stream of length (where an item with value
either or can be observed every time unit) can have exponentially many distinct values of the decay
function. Let be a constant. Consider now only binary streams with either a or a at times

with MOD (and value or no items if MOD ). Consider now the value of the decaying
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count time units after the start of the stream. There are at least such streams and each stream
corresponds to a unique value of the decaying count. Thus, our algorithm must be able to differentiate all
these streams, and thus use at least storage bits.

For the lower bound on approximate tracking, consider all streams that consist of a single item of value
“1” during elapsed time of time units. In order to obtain a factor approximation, our algorithm must be
able to differentiate the timestamp of the “1” item to within time units. Thus, it requires at least
bits.

For the upper bound note that it is sufficient to track the time stamps of the most recent 0/1-valued
items,3 where is a constant that depends on and . Alternatively, we
can use the classic algorithm (1) over floating point arithmetic with a logarithmic number of bits.

3.2 Sliding Window SLIWIN .

Sliding windows are parameterized by the window size . The corresponding decay function has
for and otherwise. Sliding windows were introduced in [9], which also presented an
algorithm that obtains a approximation for any constant using bits. With SLIWIN
decay, all data values in a recent window of size have equal importance and all older data values have
weight.

3.3 Polynomial decay POLYD

For a parameter , put . In the introduction we argued that POLYD is often a better choice for a
decay function than EXPD. As with EXPD, exactly maintaining a decaying count with POLYD requires lin-
ear storage, at least for certain polynomials. In the sequel we present efficient algorithms for approximately
maintaining POLYD counts.

Lemma 3.2 For decay function , exact tracking of POLYD requires storage bits.

Proof: We consider just decay by the power ; this argument extends also to many other polyno-
mial decay functions.

The vector of values POLYD , for , is obtained from the vector of values , for
, by multiplication by the matrix whose entry is . Reversing the order of

the rows, we get the Hilbert matrix, whose entry is . Since this matrix is known to be non-
singular, it follows that all possible -valued vectors can be recovered from the exact vector

POLYD of the decayed sum.
For completeness, to see that the Hilbert matrix is non-singular, observe that the decay POLYD

is a rational function of , and POLYD is (except at removable discon-
tinuities), a polynomial of degree . So it is completely determined by the values POLYD for

.

3.4 Polyexponential Decay

Polyexp decay with parameters and is decay by the function . Building on
this, let be a polynomial of degree . It was shown, in [7], how to track decay by by a
reduction to (pipelined) instances of exponential decay. This gives a generalization of exponential

3For general (non binary) streams, we record the “most recent” values, but instead of using actual time stamps we treat an
item of values received at time as an item of value received at time (note that the contribution to the decaying
sum is the same).
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decay to a much broader class of functions while preserving much of the simplicity of the natural algorithm
for exponential decay.

For ( ), this technique is known as Brown’s double (triple) exponential smoothing [13], from
around 1960, and is still used in a different context to model data by a line or quadratic.

We will not discuss polyexponential decay further in this article.

4 Domination-based aggregation
We quickly review Exponential Histograms and then show how cascaded computation can make them ap-
plicable to general decay functions.

4.1 Exponential Histograms

Exponential Histograms (EHs) were introduced by Datar et al [9] as a method to estimate SLIWIN decaying
counts; Datar et al proved tight bounds showing that bits are sufficient and necessary for -
approximate estimates. Note that, for sliding windows, is the minimum of elapsed time since the arrival
of the first data value and the window size .

The EH data structure maintains buckets over ranges of data points. All data seen in a time range
are aggregated into the th bucket, and the EH maintains the values and the count

for each bucket. Buckets where are discarded. When a new data point arrives, it is placed in
its own new bucket. Buckets are then merged in a certain way such that there is always buckets.
At any given point , the estimate on the decaying count SLIWIN can be obtained from

SLIWIN

A characterization of the merging process of EH is that two consecutive buckets are merged if the
combined count of the merged buckets is dominated by the total count of all more-recent buckets. We refer
to this aggregation process as domination-based. (Note that the factor by which the preceding buckets need
to dominate depends on the desired approximation factor.) Furthermore, because all the are either or
, the sequence of bucket counts is a non-decreasing sequence of powers of 2, and, for some

and some , for each possible count , there are exactly or buckets having count , there
are at most buckets having count , and no buckets have counts greater than [9].

We will next argue that EHs can be used to obtain a decaying count for general decay functions. To do
so we use the following immediate property of the EH data structure.

Lemma 4.1 EH for window size can be used to estimate SLIWIN DCs for all window sizes smaller than
( SLIWIN for all ).

Proof: Let the points

be the end times of buckets in the EH. Let be the minimum such that . Observe that the buckets
are the buckets of an EH for SLIWIN , since bucket formation and the domination criterion for
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merging are independent of the window size. The estimate for SLIWIN produced by the EH is thus

SLIWIN (2)

4.2 Cascaded Exponential Histograms (CEH)

We now consider general decay function.

Theorem 1 Decaying sum under any decay function can be estimated using an Exponential Histogram with
window size .

Proof: Using summation by parts, we can rewrite the decaying sum under as

SLIWIN (3)

SLIWIN

Equation (3) represents the decaying sum as a positively weighted sum of SLIWIN decaying
sums. Since a -accurate estimate of each of the decaying sums SLIWIN can be obtained
from the EH, we obtain a -estimate for the decaying sum .

We now discuss the computation involved in maintaining the approximate count given the EH.
Straightforward use of (3) suggests an time computation in each time step. It is not hard to see,
however, that, using the partition of the EH into buckets, we can considerably reduce the computation: To do
so, we first substitute the approximations supplied by Equation (2) for the decaying sums SLIWIN
in Expression (3). We obtain that the estimated decaying sum is equal to

(4)

Direct re-computation of Equation (4) in each time requires steps. It is not hard to
show, however, (using similar arguments as in [9]) that the amortized update time can be brought down to a
constant. The total memory (words) required for this estimate is .

For example, suppose consecutive weights in are . Then, at time , the decaying count is
. This can be rewritten as

. Each expression in square brackets is a sliding
window decaying count of ; all of these can be approximated with good relative error by a single instance
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of the EH method. Many of these approximations will be the same; we suppose that
and are each approximated by . Then the decaying count is approximated by

.
It is shown in [9] that EHs are essentially optimal for SLIWIN, that is, that a logarithmic number of

counters is indeed necessary. The result above thus shows that SLIWIN decay is in the sense the “hardest”
decay function, as any other decay function can be estimated using the EH data structure.

In the sequel, we refer to cascaded use of an EH applied to general decay functions as CEH (Cascaded
Exponential Histogram).

5 Weight-Based Aggregation
We develop another class of histograms, which we refer to asWeight-Based Merging histograms (WBMH).
WBMH histograms also aggregate values into buckets but the bucket boundaries are determined by the decay
function and the current time and are independent of the particular input stream. This feature is important
for giving storage-efficient algorithms, since the boundaries do not need to be explicitly stored per stream.

Each WBMH bucket is such that if and are the start and end time of the bucket, and is the time
the bucket is formed, we have that for all . This means that
all items aggregated in the bucket are assigned similar weight by the decay function at the time the bucket
is formed and as time goes on.

WBMH are applicable to decay functions with the following property: for any fixed time window ,
the ratio is non-increasing with . (Note that it suffices to require this for .) Stated
in words, this property implies that the ratio of the “weights” of two items remains fixed or becomes closer
to 1 as time progresses. As argued in the introduction, this is a natural intuitive requirement. This property
is possessed by many families of decay functions including Exponential decay (where is
constant) and Polynomial decay. So intuitively, WBMH are applicable to decay functions that drop off like
exponentials or more slowly.

Let be the weight ratio between the initial weight of an item and the weight of the
oldest item for which the decay function assigns positive weight. We now outline a deterministic process that
determines bucket boundaries as time progresses. Let be the maximum such that .
Similarly, for , let be maximum such that . The “current” bucket is sealed
and a new bucket is started at times such that . Whenever there is an and two consecutive
buckets and such that and , the two buckets are
merged into a single bucket .

Observe that the process above is independent of the stream (the count in each bucket depends on the
stream, but the boundaries of each bucket do not). We refer to a range as a region. The total
number of regions is , and there can be at most two buckets per region, on average (1/2 bucket
shared with each neighboring region and 1 bucket contained in the region), so the total number of buckets
is . If the decay function has the property that is non-increasing with , we
can further argue that the ratio of weights of two items aggregated into the same bucket is at most .

For example, consider decay , and suppose . Then the regions are determined
by , , , and so on. The weights associated with “spots” in the region are thus

(the weights within each pair of parentheses corresponds to a region). This is correct because the weights in
each region span a range where the largest value is at most a factor of times the smallest value.
Consider now the formation of buckets starting at time . Initially at there is a single bucket
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formed with corresponding weights . At the new item is appended to the current bucket and it is
sealed as . At we have, , at we have , at we have

at we have

at we have

and at

Note that the bucket of most recent items always alternates between time-width 1 and time-width 2.
The information stored per stream is the total count of items that arrived within the time boundaries of

each bucket. Since each such number is at most , each number requires bits to store exactly, for
a total of bits over the buckets. But the counts need only be stored approximately.
In floating point, the exponent requires bits. We will also store the most significant

bits of the expansion, where . Note that the count in each bucket is
obtained by summing exact counts of 1 or 0 in a summation tree of depth . Recursively
assume that, at level of the summation tree, the values are good to the factor . We can add two
such counts, getting a sum also good to the factor . We next round the sum to the most significant

bits, which is equivalent to multiplying by a number between and . Thus the rounded
sum is good to the factor , as desired. Thus, at the top of the tree, the rounded sum is good to

, by definition of .
The foregoing assumes that we know in advance. More generally, at level , rounding is equivalent

to multiplying by a number between 1 and , where the ’s are not necessarily all equal. We want
to be at most , or . For this, it suffices to put ,

so that the number of storage bits at level is , for . This way
does not need to be known in advance.
We have established the following:

Lemma 5.1 Let be a decay function such that is non-increasing with . The WBMH
algorithm uses storage bits and approximates the decaying count to within .

For which decay functions does the WBMH algorithms outperform CEHs ? It is not hard to see that
for EXPD, , and thus WBMH requires a linear number of buckets and CEH is more
efficient. For POLYD, , WBMH uses only a logarithmic number of buckets, and
requires considerably fewer bits per bucket than CEH. In total, it uses storage bits
versus bits used by CEH; thus, there is a quadratic gap. More generally, WBMH beats CEHs
also for sub-polynomial decay, as the number of buckets of WBMH is sub-logarithmic in elapsed time;
WBMH also beats CEH for slightly super-polynomial decays.

Lastly, we remark that more efficient tracking of polynomially-decaying counts can also be achieved
through a CEH with “approximate” maintenance of each histogram time boundary (which would require
only bits). For polynomial-decay, a constant factor error in the time boundary translates to a
constant factor error in the contribution of the bucket. This relaxation is discussed in [9] (and attributed to
Y. Matias).
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6 Lower bound for polynomially-decaying counts
We now establish that a logarithmic number of bits are necessary for maintaining polynomially-decaying
counts.

Theorem 2 A logarithmic number of bits (in elapsed time) is necessary for approximately maintaining
decay by .

Proof: We first give the proof for decaying sums (of data that can take non-negative integer values other
than 0’s and 1’s). Later, we extend the proof to 0/1-valued data.

Consider the decay function . Let be a constant such that ; e.g., . We
will consider a time interval of length , from to . Let .

Consider the following family of streams: for , at time , we receive a burst of count
. The streams differ by the size of the burst and thus there are different streams in our

family. Note that the size of the bursts decreases with time (increases with ) and no more data arrives after
time .

We now consider the time interval . During this time no more data arrives, but we need to
“remember” enough about the stream we had seen so that we can estimate the value of the decaying count,
to within some constant accuracy , at all times .

Let . A particular stream in the family is determined by the values ( ).
We will show that we will need to know all the values in order to estimate the decaying count correctly.
Thus, at time , we will need a storage of at least bits.

Consider the decaying count value at time . We have

We now compute upper bounds on the contribution of the prefix and the suffix of this sum. For the prefix
of the sum up to term we obtain

(5)

For the suffix of the sum, starting at term , we obtain

(6)

12



By combining the bounds (5) and (6) we obtain that

Observe now that the th term is equal to

Since and , we obtain that the contribution of the prefix and suffix is at most the
fraction of the contribution of the th term. It follows that (independently of the rest of the stream) we
must know the value of in order to estimate the decaying count with at time .

Now suppose we require that the data takes values 0 or 1 and arrives at equally-spaced time steps. Note
that the above proof goes through, essentially unchanged, if , since a single burst of count
at time can be spread out to 1’s. At time , the burst will have ocurred to
time units in the past, and so all 1’s in the burst will have approximately the same weight. If , however,
then the proof needs modification, since there isn’t time to read 1’s from time to 0 (we actually
need to absorb the 1’s between consecutive bursts). Instead, we proceed as follows. Instead of using bursts
of size , use bursts of size , and only use some of the slots—the ones for which the size of the
burst is at least 1 and at most . First note that, if we divide all the bursts by the same number (still
concentrating each burst at a single time instant), the relative contributions of the prefix, suffix, and ’th
terms remains the same. Next note that, by spreading out a burst as several 1’s into the past, all contributions
decrease, compared with a burst ocurring at a single time instant. A decrease in contributions from prefixes
and suffixes can only help. If the ’th burst has size at most , then, at time , the weight of
data in this burst varies from to ; i.e., the weight can decrease by the factor

, which, assuming , is approximately , a tolerable amount. Next, we show
that there are such slots. The requirement is equivalent to . The
requirement is equivalent to

i.e., , when , and vacuous otherwise. Thus the number of allowable ’s is
, as desired. Finally, for this to work, we also need that the

’th and ’st bursts are disjoint. That is, we need . Choose
large enough that . Then, since and , ,

as desired. Thus, for , given arbitrary , bits of storage (depending on ) are required
to track decay of 0/1-valued data to within the factor .

7 Other aggregate functions

7.1 Time-decaying norms

Each data item is an increment update to the value of a coordinate of a -dimensional vector. The increment
is specified by the amount and the coordinate . The -dimensional
vector H is defined by the coordinate values

H
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For a fixed , we show how to maintain a summary of size , such that for any decay function
, we can obtain (with high confidence) an approximate value of the norm H .
The sliding-windows version of the problem was formulated in [9] and the proposed solution is based

on a sketching technique of Indyk [10]. By using the cascaded computation (CEH) with the standard EH
data structures, the solution of [9] extends for arbitrary decay functions.

The basic idea is to (randomly) generate (using Indyk’s method) a fixed (over time) matrix (the
matrix entries need not be stored and can be generated from seeds on the fly. They depend on .),
the value is determined by the desired confidence and accuracy. Each data point is then multiplied in
turn by the entries of the th column of the matrix to obtain a vector of size . The summary that is
maintained over time (just like [9]) are EHs, where the th EH keeps the cumulative sum of the entry
of the -vector. The th EH thus allows us to retrieve an approximate value of the decaying sum with
respect to any decay function. These values, using Indyk’s method, allow us to obtain an approximate
value of H . The storage required for this solution (see [9]) is (for fixed confidence and accuracy)

.

7.2 Time-decaying Random selection

Consider a stream of items, where is the arrival time of item . We define to be a random variable
that assumes the value with probability proportional to , that is,

The random selection problem in the more general setting of spatial decay is addressed in [5]. We describe
the method in our context of time-decay. The first component is to perform random selection from sliding
windows. In order to do that, we draw a uniform random number (rank) for each item which arrives and
store an item if and only if it has the minimum rank of all items that succeeded it (this list is termed in [5, 3]
an MV/D list). It is not hard to see that the expected size of this MV/D list is logarithmic in the total number
of items and it allows us to obtain, for each window , the least-ranked item in that window. Observe
that the least-ranked item is in fact a uniform random selection from all items in the -window. The next
component in [5] (translated to our context) is a reduction of performing time-decaying random selection
according to an arbitrary decay function to uniform random selection from -windows (the reduction allows
dependencies between the selection for different-size windows) and the decaying count problem.4

A time-decaying approximate -quantile is an item that with high probability is a -quantile of the
distribution of values weighted by . As discussed in [5], using an existing folklore technique, an
approximate median with constant confidence arbitrarily close to can be obtained by performing constant
number of independent random selections.

7.3 Time-decaying variance

The time-decaying variance is defined by

The problem, for the special case of sliding-window decay (where variance is computed over a sliding
window), was studied in [1] and an algorithm based on a variant of the EH technique was proposed. The

4In fact, we need the estimates on the count to be unbiased. “Plain” EHs do not provide unbiased estimates, but a simple method
to obtain unbiased estimates is through two MV/D lists [5, 3].
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algorithm of [1] can retrieve the -window variance for all . It is not clear, however, if there is
a variant of this algorithm which applies to time-decaying variance under arbitrary decay functions. A
general reduction of the spatially-decaying moments problem to maintaining a polylogarithmic number of
spatially-decaying counts was presented in [4]. In particular, this reduction means that we can obtain an
approximate time-decaying variance (for any desired decay functions) by maintaining a polylogarithmic
number of “plain” EHs (each EH is over a different predicate applied to the values ). The reduction in [4]
also requires a time-decaying approximate median (which can be obtained efficiently as outlined earlier).

8 Summary
Decay function are important tools for summarizing streams of data values. The use of time-decaying
summations predates the theory of stream algorithms, but was essentially limited to Exponential decays, for
which there was a known simple and efficient algorithm that requires only storage bits. In recent
work, Datar et al [9] considered sliding-window time-decay and developed algorithms for approximately
maintaining sum and average aggregates using storage.

We argue that Exponential and sliding window decay lack some important intuitive properties and do not
provide sufficient flexibility in tuning the rate of decay. Thus, it is important to develop efficient algorithms
for other families of decay functions. One very appealing such family is polynomial decay.

We then extend the technique of [9] and present algorithms for maintaining time-decaying sum (and
average) aggregates under general decay functions using storage, in particular, showing that in
a sense, sliding windows are the “hardest” decay functions in terms of required storage. We continue and
develop a different algorithm which beats the storage bound for some families of decay functions.
In particular, polynomially-decaying aggregates can be maintained using storage bits.
We thus show that, interestingly, polynomial decay can be maintained almost as efficiently as Exponential
decay and considerably more efficiently than sliding window decay. We also provide a lower bound of

for polynomially-decaying aggregates.
Beyond time-decaying summations and averages, we formulate and discuss efficent algorithms for other

natural aggregate functions, including variance, norms, and random sampling.
Beyond the theoretical and conceptual contributions, our work introduces a powerful new tool for a

range of applications involving large data streams.
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