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ABSTRACT

Measurement, collection, and interpretation of network us-
age data commonly involves multiple stage of sampling and
aggregation. Examples include sampling packets, aggregat-
ing them into flow statistics at a router, sampling and aggre-
gation of usage records in a network data repository for re-
porting, query and archiving. Although unbiased estimates
of packet, bytes and flows usage can be formed for each sam-
pling operation, for many applications it is crucial to know
the inherent estimation error. Previous work in this area
has been limited mainly to analyzing the estimator variance
for particular methods, e.g., independent packet sampling.
However, the variance is of limited use for more general sam-
pling methods, where the estimate may not be well approx-
imated by a Gaussian distribution.

This motivates our paper, in which we establish Chernoff
bounds on the likelihood of estimation error in a general
multistage combination of measurement sampling and ag-
gregation. We derive the scale against which errors are mea-
sured, in terms of the constituent sampling and aggregation
operations. In particular this enables us to obtain rigorous
confidence intervals around any given estimate. We apply
our method to a number of sampling schemes both in the lit-
erature and currently deployed, including sampling of packet
sampled NetFlow records, Sample and Hold, and Flow Slic-
ing. We obtain one particularly striking result in the first
case: that for a range of parameterizations, packet sampling
has no additional impact on the estimator confidence de-
rived from our bound, beyond that already imposed by flow
sampling.

Categories and Subject Descriptors

C.2.3 [Computer—Communications Networks]: Network
Operations—Network monitoring; G.3 [Probability and
Statistics]
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1. INTRODUCTION
1.1 Motivation

Network traffic measurement typically involves the follow-
ing steps: (i) taking traffic measurements at an observation
point such as a router or special purpose measurement de-
vice; (ii) exporting the measurements from the observation
point to a collector, possible via intermediate staging servers;
(iii) storage in a database that serves reporting and query
functions; (iv) archiving older measurements. A large net-
work service provider may employ 1,000’s of routers and
10,000’s of interfaces; consequently the volume of traffic
measurements is potentially enormous.

A large class of network management applications—
such as traffic engineering, capacity planning and
troubleshooting—use measured traffic usage as their input
data. This data takes the form of counts of packets, bytes,
or the number of flows, over time periods, broken out over
subsets of traffic classified according to, e.g., source, destina-
tion, applications class, and/or other features. Some traffic
subsets are known in advance of the time of measurement,
e.g. for routine reporting of usage by application and cus-
tomer. However, for troubleshooting or exploratory studies,
the traffic subsets of interest are not known in advance of
measurement. The requirement to be able to aggregate mea-
surements over arbitrary subsets and timescales precludes
measurement simply using static counters in routers; an in-
feasible large number would be required to measure traffic
at sufficiently fine granularity to service all future queries.

These considerations motivate the use of packet and flow
measurement techniques currently deployed in production
networks, such as NetFlow [3]. Routers summarize individ-
ual traffic flows passing through them and export a stream of
summaries (flow records) to a collector. Increasingly, large
network service providers employ sampling and/or aggrega-
tion during the steps (i)—(iv) above in order to control data
volumes. Some specific cases are packet sampling, aggrega-
tion of sampled packets into flow records (these two steps are
commonly accomplished using Sampled NetFlow[3]), and
the sampling and aggregation of the resulting flow records



on their collection path. In addition to these methods cur-
rently deployed, stateful packet sampling methods have also
been proposed in the literature, e.g., Sample and Hold [17].
We review these in more detail shortly.

Whenever sampling is employed in the measurement in-
frastructure, traffic usage must be estimated from the sam-
ples. A generic way to produce unbiased estimators is to
divide the weight of each contribution to usage (e.g., from
a sampled packet or flow) by its sampling probability; this
is an example of the standard Horwitz-Thompson estima-
tor [19]. When multiple stages of sampling are employed,
information about the original traffic is progressively lost.
Indeed, for many applications it is crucial to know the in-
herent error associated with estimation. Given an estimate
X of a traffic volume, for engineering purposes we want to
be able to set a confidence level X for the true underlying
traffic volume X in the following way: there must be only
a known small chance that X could have exceeded X, yet
produced the estimate X. Likewise, we wish to generate a
corresponding lower level X_ which X can fall under with
only some small probability. A particular version of this
problem is when X = 0, i.e., how likely it is that X could
exceed X when no traffic is sampled.

An important example in use today is the further sampling
of packet sampled NetFlow records. If the NetFlow records
were not derived from sampled packets, the flow sizes would
be known exactly, and hence the results of [29] would give
the required confidence intervals. But when packet sampling
is used prior to flow sampling, the flow size is now an esti-
mate, i.e., a random variable, so the previous result does
not apply. Our aim in this paper is to produce a general
framework in which to calculate confidence intervals for ar-
bitrary combinations of aggregation operations with (a class
of) sampling operations.

1.2 Contribution and Outline

The sampling operations considered in this paper are a
generalization of threshold sampling introduced in [10]
for the size-dependent sampling of flow records; see Sec-
tion 1.3 below. Threshold sampling is a form of Poisson sam-
pling that allows for unit selection probabilities; items are se-
lected independently with a specified probability. Threshold
sampling achieves an optimal trade-off between low sample
volumes and low estimation variance; see Section 2 below.
It is employed or proposed for a number of internet traffic
measurement systems [23, 21], and in other fields [30].

(i) In Section 2 we define generalized threshold sampling
and show how a number of sampling schemes from the
literature are in fact instances of it.

(ii) In Section 3 we set up the problem of unbiased es-
timation for multistage sampling and aggregation of
network usage as a stochastic process on a tree. In our
formulation (a) the leaf variables represent the weights
of unsampled data; (b) threshold sampling operation
are associated with each link; (c) a general node ag-
gregates sampled variables from its child nodes, and
(d) the root node carries the result of the multistage
sampling operation. Within this formulation we are
able to derive Chernoff bounds for the tail distribution
of the estimation error. These bounds are sometimes
called exponential bounds: in this case the tail prob-
ability of a given fractional estimation error falls off

exponentially in the size of the usage to be estimated.
The bounds supply rigorous confidence intervals for
the true aggregates in terms of their estimates. Some
details of the analysis are deferred to Section 7.

(iii) Section 4 applies the results to three single and multi-
stage sampling algorithms that are currently employed
and/or proposed in the literature. Three important
cases that we treat are

-- Threshold Sampling [10] of packet sampled Net-
Flow records, for which we analyze the interplay
between packet sampling rate and flow sampling
threshold for flow records and the resulting im-
pact on estimation accuracy.

-- Sample and Hold [17], which we realize as a mul-
tistage threshold sample; and

-- Flow Slicing [23], a composition of uniform packet
sampling, sample and hold, and threshold sam-
pling.

(iv) Section 5 evaluates the performance of the bounds on a
network dataset, and shows that they perform within
expected accuracy. We conclude in Section 6.

1.3 A Sampling of Sampling and Aggregation

In order to set the scene for the analysis of this paper, we
briefly describe the sampling and aggregation methods that
will feature in this paper; they serve as examples to which
our methods are applicable.

(i) Packet Sampling: Packets are sampled by a router or spe-
cial purpose measurement device. In one variant, a report
on each sampled packet is exported to a collector; examples
include the sFlow router feature [25], the emerging Packet
Sampling (PSAMP) standard of the IETF [7], and Trajec-
tory Sampling [15].

In another variant, packet sampling is a precursor to the
compilation of flow statistics, which cannot generally be per-
formed at the line rate of router interfaces. Sampled Net-
Flow [3] operates in this manner, packet sampling being ei-
ther periodic in the packet count (every N'" packet is se-
lected) or stratified by count (one packet is chosen at random
from every group of N successive packets).

(ii) Aggregation of packet information into flow statistics:
Flows are sets of packets with a common property, known as
the key, observed at the router within some period of time.
The key commonly comprises fields from the packet header,
such as source and destination IP address and TCP/UDP
port numbers. Flows can be demarked using, e.g., peri-
odic time intervals, or timeouts which can be inactive (the
flow is considered terminated when the time since the last
packet observed with the flow key exceeds an inactive time-
out threshold) or active (the the time since the first packet
observed with the flow key exceeds an active timeout thresh-
old); other criteria may be used in addition, see [3]. When
the flow terminates, the router summarizes its aggregate
properties in a flow record (typically including the key, to-
tal packets and bytes seen, observation time of first and last
packet) which is then exported.

(iii) Sampling of Flow Records. The salient empirical fact
concerning flows is that a small proportion of the flows rep-
resent a large proportion of packets and bytes; see, e.g.,



[10]. For this reason, estimates of packet and bytes counts
derived from uniformly sampled flow records have poor ac-
curacy, being very sensitive to inclusion or omission of the
large flows. Threshold Sampling was proposed to overcome
this problem [10]. Flows reporting (byte or packet) size x
are sampled with probability p.(z) = min{l,z/z} where z
is known as the threshold. Flows of size at least z are sam-
pled with probability 1 while smaller flows are sampled with
probability proportional to their size. The form of p, can
be shown to give the optimal tradeoff between the average
number of flows sampled and the variance of the flow size
estimator derived from the samples. Priority sampling is a
variant of threshold sampling in which exactly k flows are
selected from a population [11].

(iv) Stateful Packet Sampling. Several authors have pro-
posed packet sampling and aggregation methods that main-
tain some degree of flow state. In Counting Samples [18] and
the subsequent Sample and Hold [17], potential new flow
cache entries are sampled prior to instantiation. Specifi-
cally, when a packet arrives, if a cache entry is currently
maintained for its key, the entry is accordingly updated. If
no entry exists, then one is instantiated with a fixed proba-
bility 1 — p (Counting Samples) or probability 1 — r* where
x is the packet size (Sample and Hold). Thus the chance
to miss a flow entirely is exponentially small in the num-
ber of packets (or bytes)!. Further work in this direction
involves dynamic adjustment of sampling probabilities and
progressive resampling of aggregates in response to changing
network loads and cache utilization [6, 5, 16, 22].

(v) Aggregation of Flow Records Flow records (possibly sam-
pled) may be aggregated over longer collection windows (e.g.
minutes or hours) for routing reporting or archiving.

1.4 Related Work

Prior studies have examined estimation error associated
with individual sampling methods. In some cases, estimator
variances are used to derive confidence intervals based on a
Gaussian approximation. From the Central Limit Theorem,
this can be a reasonable approach for simple sampling of a
large number of packets. However, the variance is of limited
use for more general sampling methods, where such approx-
imations may not be so good. A number of authors have an-
alyzed estimator variance to determine the ramifications of
packet sampling for measurement-based applications. The
impact for the problem of ranking flows by volume is con-
sidered in [20]; for passive performance measurement in [31],
together with other applications of Trajectory Sampling in
[8]. The impact of sampling on the estimation of packet size
distributions was considered in [4]. The effect on security
applications has been considered by a number of authors:
see, e.g., [2, 24, 26].

Stateful sampling methods for aggregating packets into
flows have been proposed in recent years. Work in this
area often incorporates an analysis of estimation error ei-
ther through analysis of variance; we list in particular [5,
6, 16, 17, 18, 22]. The original design of Sample and Hold
proposed estimating the actual flow bytes by the sampled
flow bytes [17]. This yields a biased estimator whose under-
count of the actual flow bytes follows a truncated geometric

'We emphasize the chance to sample a flow with Sample
and Hold is the same as for normal packet sampling with the
same probability. But Sample and Hold has an advantage
in reporting more information than sampled NetFlow.
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distribution. In fact there is no unbiased estimator of the
actual bytes that is a function of the sampled bytes alone. A
more recent paper [23], which derived unbiased estimators
for Sampled and Hold, analyzed their variance. Estimation
variance for Threshold and Priority Sampling as applicable
to sampling of flow records, has been examined in [1, 10, 11,
14, 27, 28].

Closest in approach to the current paper are the following.
[29] used Chernoff bounds to derive confidence intervals on
the true traffic volumes, based on estimates derived through
threshold and priority sampling. [13] introduced the notion
of a generalized threshold and discussed its behavior under
the limited case of aggregation and threshold sampling. [9]
showed how the Law of Total Variance can be used propa-
gate estimator variance in multistage sampling and aggre-
gation.

2. GENERALIZED THRESHOLD
SAMPLING

In this section we define generalized threshold sampling,
and show how it encompasses a number of sampling schemes
in current use and proposed in the literature.

2.1 Terminology

Consider a weight x, i.e., a nonnegative possibly random
variable. In (standard) threshold sampling, a weight z is
sampled with probability p.(z) = min{l,z/z}. The cor-
responding unbiased estimate of z is T = (x/p:(z))z =
x max{z, z}, where x is the indicator function for selection,
i.e., x =1 w.p. p-(z) and 0 otherwise. In [10] the probabil-
ity p. is shown to minimize the cost C, = E[x] + 272 VarZ,
i.e., a linear combination of expected number of samples and
variance estimate. It is desirable to keep both these small;
p. implements their optimal trade-off.

Generalized threshold sampling admits more general sam-
pling probabilities. In fact, for applications we need to gen-
eralize even further to the multidimensional case; we write
x=(z®,. .. D) e [0,00)%. For example, (@, 23®) may
denote packets and bytes reported in a flow record. We do
not assume that all possible values of x are allowed. For the
flow record example, protocol conventions concerning pack-
ets sizes impose constraints between z® and z?. In some
cases, the sampling properties may be determined entirely
by a subset of the azw, the remaining variables are just addi-
tive auxiliary variables. For example: flow sampling can be
performed on the basis of byte values x(z); but the packets
2z can also be estimated. Generally, we will denote the set
of allowed x by 2.

A probability function is a map p : [0,00)¢ — [0,1]
such that p(x) = 0 implies = 0. Denote by Q, C Q the
allowed « on which the probability function is strictly less
than 1:

Qp={zeQ:p(x) <1} (1)

With each probability function p we associate a vector of
generalized thresholds 7, = (7\", ..., 75V):
20

70 =

(2)

= p

e, p(x)
Generalized threshold sampling entails sampling « with
probability p(zx), where p is a probability function for which
the thresholds ngz) < oo. Finally, we will find it useful to



define
5 — gy { (@) . QO
> p{z' 1z € Q,}

Clearly 5;,0 < Téi).

2.2 Examples

(i) Standard threshold sampling: p(z)
min{1,z/z} is an example with § = 7 = z.

= p:(x)
(ii) Uniform Sampling For uniform sampling with probabil-
ity p of weights whose values are unbounded, then clearly
the sampling threshold is infinite 7 = sup,.,z/p = +o0.
However, if there is an a priori upper bound Zmax on x, then
T = Tmax/p. An example of this is sampling of IP packets,
where x is the packet size, bounded above by the network
maximum transmission unit (MTU). An MTU of 1500 bytes
is currently common.

(iii) Flow Slicing: Flow Slicing [23] includes an extension of
threshold sampling to operate with a multifactor aggregate
flow descriptor & = (™, 2®,2®)), these being the aggre-
gate numbers of bytes, packets and flows possessing a TCP
SYN flag that match a given key. The sampling probability
is p(x) = min{l,Zf:1 ™ /z} for some 2 > 0. Thus
T,Si) < 2, Equality is possible if 29 = 0 is allowed in
Q. On the other hand, known constraints between variables
can constrain the thresholds. Suppose we know the min-
imum possible packet size Muyin and the MTU, which we
denote by Mmax. Then

x(Q)Mmi'n < 15(1) < x(Q)Mmax

(4)

We analyze estimation error for Flow Slicing further in Sec-
tion 4.3.

2.3 Estimation and Bounded Uncertainty

The thresholds 7, = (75") play a role in simple bounds on
the uncertainty of the usual Horwitz-Thompson estimators
of x. Let o denote a random variable uniformly distributed
on (0,1]. The sampling operator associated with the proba-
bility function p is a random function S, : [0, 00)¢ — [0, 00)¢
where

()

where I(A) is the usual indicator function of the event A.
{p(x) > «a} is the event that the weight x is sampled. If
it is sampled, then the estimate of each component z(* is
formed by dividing by the sampling probability p(zx). It is
elementary that E[S,(x)] = @, i.e, & = Sp(x) is an unbiased
estimator of x. _

In the estimation context, we can interpret the Tél) as
follows. They bound possible values of the estimates Z(*
can take when they are not equal to 2. Thus, roughly
speaking, they are the largest possible uncertain values of
the ¥ . This interpretation can be extended a little further.
The following bounds on the variance of ¥ are easy to

establish:

Var(@?) = @)@ =) <70 ()
When T,Si) is unbounded, so is the corresponding variance.
Thus the finiteness condition on Tél) is natural when we want
to consider estimation with bounded variance.
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3. ANALYSIS OF MULTISTAGE
SAMPLING AND AGGREGATION

In this section we represent multistage sampling and ag-
gregation of network measurements by a stochastic process
on a tree, whose values represent unbiased estimates after
each stage of aggregation. We establish Chernoff bounds
for this stochastic process that exponentially bound the tail
probabilities of the estimation error.

3.1 Sampling Trees.

A generalized threshold sampling tree is a tuple
(V,E, P, X) where (V,E) is a tree with node (or vertex)
set V and edges E, P = {py : kK € V'} is a set of probability
functions, and the sampling process X = {X, : k€ V}is a
vertex-indexed family of weights in [0, 0c0)? as defined below.

In a generalized threshold sampling tree we associate
nodes with aggregation and edges with sampling. c(k) is
the set of child nodes of node k. R C V is the set of leaf
nodes, i.e., those with no children. d(k) is the set of descen-
dants of k, not including k itself. a(k) is the set of ancestors
of k, not including k itself, i.e., a(k) = {j : k € d(j)}. Rk is
the set of leaves descended through k, i.e., Ry = RN d(k).
The root node of the tree will be denoted by 0.

An edge (j,k) with terminal node k is associated with a
probability function px. The sampling process X is deter-
mined as follows. Each leaf node k € R comes equipped with
some fixed X > 0. For all other nodes k € V' \ R, the ag-
gregate X, is defined through the componentwise sum (see
Figure 1)

Xp= Y Sp(Xy) (7)

j€c(k)

Note that we view the tree as a deterministic object in
the sense that its topology is independent of the process
X. Thus even if X = 0 because none of the weights X
descended from k survived sampling, we do not delete or
otherwise omit the branch descended from k from consider-
ation.

Each X}, is an unbiased estimator of the total weight

Xk:ZXi

i€Ry,

(8)

at leaves descended from k. Our aim is to establish Chernoff
bounds on the difference. Without loss of generality we focus
on the statistics of Xo — Xp.

3.2 Estimation Error Bounds

It is important to note that although a specific tree topol-
ogy represents the multistage sampling and aggregation of
a specific set of packets or flows, the analysis that we now
present gives bounds which are independent of the topology
and hence the details of the set of packets under study. In
fact, the exponential error estimation bound below depends
only on (a) the total (possibly multidimensional) usage of
the traffic under study Xo, the measured usage X, and a
worst case threshold 7o = (7"'(51)7 . .,féd)) that is a func-
tion only of the sampling operations used on the tree, and
is, hence, presumably known in any given application. For
clarity we denote the thresholds 8, and 7, by 6 and 7%
respectively.



X, ...

Figure 1: Illustration of topology with weights.

Define
e(f
K —_ 9
©) = Gy ©)
=(1) (4)
W= (10

Theorem 1 below is our main technical result. It states
that we can apply standard type Chernoff bounds at any
node k based on 7y from (10) regardless of the complexity
of the subtree descending from k. The proof of Theorem 1
is deferred to Section 7.

THEOREM 1. Let o > 0. For eachi € {1,...,d},

; iy o () /= (4)
Prix$” > (1+0)X$"] K(o)¥0 /70

IN

(11)

. — (s ¢ (1) /=(3)
Prix{’ < (1-o)X{"] < K(-o)™ /7" (12)

IN

The form of the bounds can be interpreted as follows. The
probability of a given fractional error o falls off exponentially
in a scale factor. The scale factor obtained by dividing the
size X(()Z) of the usage to be estimated, by the threshold
ﬂgi). Thus usage which is large compared with the threshold
is easier to estimate accurately. Note that the governing
threshold Tél) does not depend on aggregation operations,
only the maximum threshold 7o of sampling operations over
all tree nodes.

3.3 Confidence Intervals from Estimates

The bounds in Section 3.2 can be inverted to determine
confidence intervals for the true leaf total Xo, based on a
particular value x of the estimate X,. Given particular
outcome Xy = x and a probability € € (0, 1], we seek as

confidence limits those values X+ (g, x, 7o) of Xo that obey
X(i)(s ™ ’(i)) <z < X(i (e, 2V —(i)) and for which
the probability to observe (¥ with X( R being greater than
X (e, =9 7 70 )) is less than ¢, and likewise the probablhty
to observe ) with X( ) being less than X _ (e, 7 ) will

be less than e.
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Finding confidence intervals from estimated quantities is
a well known task in general. For the current setting we take
an approach similar to the related work in [29]. We write
6 = {Xi : k € R}; we express the underlying dependence
X on 0 by through its distribution Pry. For each ¢ let

. . _ 7 (i) )= (i)
B (z,e) ={0: X" > 2, K(z/X{" —1)%0 /70" <} (13)

Then
Pr@[B( >( 7 )] (14)
= Pro[X é <max{z:0¢€ B® (z,e)}] (15)
= max Prg[Xéi) <z]<e (16)

z: 0€B() (z,¢)

where the last inequality follows from (12). A similar argu-
ment follows using the upper bound (11) and hence we have
proved:

THEOREM 2.
=) [)’((i) > X ( X(Z) — () ]
MNa&o " =2 +(&, A9 "5 Ty )
PriX” < X (e, X", 7")]

IN

€ (17)
€ (18)

IN

where X_(e,x,7) < X4(g,z,7) are the solutions X to

K(z/X —1)%7 = (19)

The roots X+ (e,z,7) can be written more compactly as

Xi(e,z,7) =28+ (e /") (20)

where for y < 1/e, E_(y) < E4(y) are the solutions & to
fe =y

3.4 Uniform Sampling

Here we show how uniform sampling can fit into our frame-
work. This is crucial to the analysis in Section 4 of multi-
stage sampling applications that employ uniform sampling
in some stages. With uniform sampling p(z) = p < 1, the
threshold 7 is infinite unless the auxiliary variable is essen-
tially bounded, i.e., bounded with probability 1. Thus when
pr(x) = mk, independent of x, then

(21)

7, = esssup(Xx)/ Tk (22)

In general, such a bound may not be particularly useful,
since the maximum possible value of X, may be far larger
than the typical value, especially when X} is the result of
multiple successive sampling operations. However at leaf
nodes k, Xy is deterministic, and in this case we have 1, =
Xy /7. We apply this bound to the analysis of estimation
errors arising from the sampling of packet sampled NetFlow
records and Flow Slicing in Section 4.1 below.

4. APPLICATIONS

We now show how the methods of the previous section
apply in three cases: threshold sampling of packet sampled
flow records, Sample and Hold, and Flow Slicing.

4.1 Threshold Sampling of Packet—-Sampled
Flows

The sampling topology for threshold sampling of packet
sampled flow records is illustrated in Figure 2. At the bot-
tom are shown the individual packets, grouped in flows prior
to sampling. The weight X; ; is the byte size of packet j in



aggregation of sampled flows Xo

threshold flow sampling:
Pyo(x)=max{1,x/z)

aggregation into

flows records X, ,

uniform packet

sampling:
P, (0)=1N
X1 X XigXia Xoq oo Xgqeee Kgqee Xs1
=
flow 1 flow 2 flow 3 flow 4 flow 5

Figure 2: Illustration of topology with weights for
threshold sampling of packet sampled flows.

flow i. Each packet is sampled independently with proba-
bility 1/N. As remarked in Sectionl.3(ii), packet sampling
is commonly implemented as periodic or stratified. In prac-
tice, we do not expect differences between these regimes and
independent sampling to significantly affect the conclusions
of our analysis,; the sampling properties of flows embedded
in background traffic on high speed links has been found to
be largely independent of the exact method; see [12].

The packets sampled from a flow are aggregated into a
flow record with estimated byte size Xi,o = 3. N X, ; where

>’ indicates the sum is over the random set of selected
packets. Each flow record is then threshold sampled with
threshold z, the results of which are aggregated at node 0.
In network measurement applications, a subset of interest-
ing flow records is usually selected based on their key; we
regard Figure 2 as representing the passage of all packets
in a flow matching a given key through multistage sampling
and aggregation. Estimation of aggregate traffic over a cer-
tain period would involve aggregation over a number of such
trees, one per flow. We do not consider this final aggrega-
tion over matching flow records in our analysis because each
such tree has the same sampling parameters and so the gov-
erning threshold 7 is the same for many such trees as for
one. This illustrates one strength of our approach: we do
not need to know the specific sampling tree topology in ad-
vance. Although the relevant tree would depend on the flow
keys of interest, we need only know the maximum threshold
for sampling operations in the tree.

Using the approach described in Section 3.4 then the
threshold for the packet sampling step is N Mmax, Where
Minax is the network MTU. Thus the overall threshold is

To = max{N Mmax, 2} (23)

The form of this bound is quite interesting, since it means
that the accuracy bound is actually independent of the
packet sampling rate provided NMmax < z. Likewise, it
is independent of the flow sampling threshold z provided
N Mpax > 2.

We can also estimate the number of packets, extending
to the two dimensional weights (X, X®) representing
(bytes, packets), using the same flow sampling probability
p(x) = p-(zV). Then the threshold 7? for packet sampling
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Figure 3: Sampling and Aggregation Tree for Sam-
ple and Hold. Each leaf link k corresponds to a
packet of byte size Xj. Links (k',k) a trivial sam-
pling with probability one. Links ((k + 1)’,k') are
threshold sampling with threshold z;, = X /p, where
pr = 1 — r*F the probability to sample packet k.

is N, and for flow sampling is

sup x<2)/pz(x(1>) = sup x<2>/(az<1>/z) < z/Mmin
:z::z(l)<z :z::z(l)<z
(24)
where Mmin is the minimum packet size. Thus the overall
threshold for packet number estimation is

7% = max{N, z/Mumin} (25)

We emphasize that the disjoining of the space of sampling
parameters in regions where the confidence intervals depend
only on one of the sampling parameters (1/N, z) is specific to
the confidence intervals derived from our Chernoff bounds.
This does not exclude the possibility of tighter confidence
intervals with a more complex dependence on the parame-
ters.

4.2 Sample and Hold

We now render Sample and Hold as a sampling tree; see
Figure 3. Leaf links k corresponds to a packet of byte size
Xy. Links (k¥ k) have trivial sampling with probability one.
Links ((k + 1)’,k") are threshold sampling with threshold
zr = Xi/pr where pp, = 1 — rXk the probability to sam-
ple packet k. (Here 1 — r can be thought of as a per-byte
sampling probability).

Following [23], the total byte weight Xo = > 5_, X& of
bytes has an unbiased estimator

~ X- n

Xo="—E+ Z X (26)
Py i=1+k

where & is the index of the first selected packet. We now

confirm that the sampling and aggregation tree of Figure 3

reproduces Sample and Hold with the same estimator X,

equal to )?0 in distribution.

THEOREM 3. (i) X, > 2m forz < m <n. Hence Xo
and Xo have the same distribution.

(i) The wunbiased estimator Xo for sample and hold
obeys the bounds of Theorem 1 with threshold 7o =
maxy X5/ (1 —r¥F).



Packet Sample Multifactor
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Figure 4: Flow Slicing. (Top) Schematic of Sampling
Composition. (Bottom) Representation as Sampling
Tree

PROOF. (i) Since no packet has been sampled before
packet E X3, = X3. Threshold sampling with threshold
z = X@/p% > X3 yields maX{Zg,X%} = XE/p% = %3/, the
corresponding probability being Pz, (X3) = pg- We now pro-
ceed by induction. Suppose X,,,; > zn,, when k<m </-1.
Then

Zk (27)

X- £
Xp="k4+ N X, >
p m:%#»l

Thus, to show that Xy > z¢ = X;/pe it suffices to show
that I'(z) > I'(y) — y for any z,y > 0 and r € (0,1) where
I'(z) = /(1 — r*). This follows since I"(x) = v(q*) where
7(2) = (1 -2+ zlog(z))/(1—2)?. Using the standard bound
1/z—1 < logz < z—1 we find 0 < 4(2) < 1. Hence
integrating the corresponding bounds I''(z) > 0 and I (y) —
1 < 0 we find T'(z) > T(0") = —1/log(r) > T'(y) — v-
Applying the terminal case £ = n we find that X, =2 X’g, as
required. The bound (ii) then follows using the maximum
threshold z,. [

The foregoing adapts to packet counting (as in Counting
Samples): replace X /pr with 1/p, where p is the uniform
packet sampling probability. The corresponding unbiased
estimate of the number of packets, (ii) holds with 7o = 1/p.

4.3 Flow Slicing

Flow Slicing [23] is a multistage sampling and aggrega-
tion scheme which composes independent packet sampling,
sample and hold, and threshold sampling on multidimen-
sional flow descriptors. A prime motivation is that the
use of resources in the measurement infrastructure (flow
cache lookup rate, flow cache occupation, export bandwidth)
can be independently controlled by adjusting the sampling
parameters of the separate stages. The three-dimensional
weights are « = (¢, 2, 2®)) where ) and z® are the
numbers of bytes and packets in a flow, and z® is the ob-
served number of TCP SYN packets. It is assumed that
all flows are TCP flows, with only the first packet having
the TCP SYN flag set. Thus for the first packet of a flow,

X,\
k1 X,
&
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the weight is = (w(l), 1,1) while for any other packet it is
T = (:E(l), 1,0). Estimating the number of flows from mea-
sured sampled SYN packet was proposed in [12].

We illustrate the parameters and sampling tree for flow
slicing in Figure 4. Packets are independently sampled
with probability ¢ then passed to Sample and Hold where
sampling is per packet with probability p?>. The resulting
flows undergo multifactor threshold sampling with thresh-
olds (2(1),2'(2),20) for bytes, packets and flows, i.e., the
sampling probability is p(x) = min{1, Zf’zl @720} We
assume that

M + i + i <1 (28)
Z1 z22 z3
since otherwise the last sampling stage is trivial, with p(x) =
1 for all « # 0.

Let s € {0,1} denote a packet SYN flag. Packet sampling
of a packet (1,1, s) yields a weight (V) /¢,1/q,s/q). Fol-
lowing Section 4.2 we represent Sample and Hold as thresh-
old sampling with packet threshold 1/pq, i.e., the size of
weight to be sampled (1/¢) divided by the sample and hold
packet sampling probability p. We can represent this as
multifactor threshold sampling with thresholds (0,1/pg, 0).
The verification that this sampling tree reproduced Sample
and Hold is somewhat easier than in the byte sampling case
treated in Section 4.2. After a first packet % is selected by
Sample and Hold, the threshold z* = 1 /pq does not exceed
XJ(.,Q) for any j > k. Hence, any subsequent packet weight
that survives the initial independent packet sampling is se-
lected by Sample and Hold with probability 1.

We now bound the overall thresholds 7o = (?él) , ?ég’), 7”0(3))
for Flow Slicing. First, following Section 2.2(ii), the
thresholds 7 for the initial independent packet sampling
are bounded componentwise by (Mmax,1,1)/q. Follow-
ing Section 4.2, the thresholds for SH are bounded by
(Mmax, 1,1)/(pq). For multidimensional flow sampling,
when p(z) < 1 we have the trivial bound 7 < (21, 2(®, 2)
from Section 2.2(iii). However, the constraints between a
flow’s total number of packets and bytes allow us to do bet-
ter for the first two components. Using (4),

z ( ey 2@ 1 )
= D | 2@ 200 2@ 2 | 2@ 1
xr x x x x T x 1
p(@) o Tie cotie coTietie

IA

1 1 3)
<1 I My, 1 07 (29)
2O T 2O Mune o) Me)

Summarizing, the overall byte, packet and SYN thresholds
for flow slicing are:

ey

7_-(51) = max{ = 2D } (30)
pq 1+ S C YA
(2)
_(2) 1 z
T = max{—, ———} (31)
Pq 14 L”l(wﬁmn
_(3) _ L)
T, = max{—,=z 32
0 { o } (32)

Note that without the inclusion of z(* in the multifactor
threshold sampling probability, the effective threshold for
SYN count estimation is infinite, i.e., there would be no
useful bound.

2

so actually this is Counting Samples



application bytes % of traffic # flows % flows max flow size average min
all 4265677642 100.00 85680 100.00 3372865057 49786 28
ftp 3394832734 79.58 727 0.84 3372865057 4669646 40
web 80120429 1.87 7787 9.08 3139196 10289 40
mail 5387032 0.12 1495 1.74 1326756 3603 40
dns 4083277 0.09 40767 47.58 621812 100 40

Table 1: Summary statistics of flows for selected applications: ftp, web,mail, dns, and all traffic

Figure 5: Flow Data: True Byte Volume by Appli-

cation Class

5. EVALUATION

5.1 Threshold Sampling of Packet—-Sampled
Flows

We evaluate the performance of our bounds on a dataset
of 85,680 flow records, collected using unsampled NetFlow,
exported from a router. The distribution of bytes reported in
the flow records was quite heavy-tailed with a single record
containing 78% of the total weight. Packets were classified
by application type based on TCP/UDP port number®. This
data was used previously in the study [29], from which we
reproduce a table of statistics of selected applications; see
Table 1. The set of applications were chosen in order to
obtain a spectrum of different statistical properties over the
applications. For example, although less than 1% of the
flows are for the ftp application, they represent most of the
byte weight. Conversely, nearly half the flows are for dns,
yet they represent less than 0.1% of the byte weight.

In contrast to [29] we now include the effects of packet
sampling. We considered packet sampling rates of 1/N with
N =10, 100 and 1,000 and threshold sampling with thresh-
old z = 5,000, 50,000 and 500,000. For each application,
for each pair of parameters (1/N, z) taking the above values,
we performed 2,500 independent estimates Xo of the true
byte size Xo = Z” X j, the sum being over all flows ¢ and
packets j within each flow; see Figure 2.

First, we investigated conformance with confidence inter-
vals defined in Section 3.3. The true byte volumes X, for
each application class are ordered in Figure 5. For each class,

3The well known problems with such classification do not
concern us since we are interested only in the accuracy of
byte estimation, not the semantics of application type.
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we generated the confidence intervals X4 (g, Xo, 7o) for each
of the 2,500 estimates Xo of Xo in that class, using ¢ = 5%.
We then compiled statistics of violation of the limits. The
proportions of runs in which Xo > X4 (¢, Xo,70) are dis-
played in Figure 6(upper); the proportions of runs in which
Xo < X_(¢,Xo, 7o) are displayed in Figure 6(lower).

For a confidence limit based on the true distribution
(rather than a bound), we would expect the confidence lim-
its to be violated in a proportion € = 5% of the runs. In
fact, the true proportion of violations is less than this in all
cases, being about 3% at most. Note that in many cases
there is no violation at all. Thus our exponential bound
is somewhat conservative. We believe this is manageable in
the sense that it leads to overestimation of estimation errors,
rather than underestimation.

The results presented in Figure 6 concern the single con-
fidence level of 5%. In order to test conformance over the
bound with the observed distribution of the estimates we
constructed quantile-quantile plots of the estimates against
the distribution bounds. This is done as follows. For
each application, we ordered the experimental estimates as
1 < x3 < ... < x2500. Thus z; is an estimate of the qﬁh
quantile of Xy, where ¢; = (i — 1)/2499. For ¢; < 1/2, we
let ¢; play the role of ¢ in (12), and seek a lower bound for
the ¢t" quantile of as the largest = for which we know that

(33)

Pre,[Xo <z]<q

Thus we seek such a value y; as the root in [0, Xo) to the
equation

g = K (y:/ Xo — 1)/ (34)

One can verify that y —= log K(y/X — 1) is concave on
(0, 00), taking maximum value 0 at y = X and approaching
1 as z \, 0. Hence when ¢; > e~ X0/ (34) has a unique
root y; in [0, Xo); otherwise we take y; = 0. When ¢; > 1/2,
we let g; play the role of 1 — ¢ in the upper bound (11) and
seek an upper bound y; for the ¢t* quantile as the root in
(X0, 00) to the equation

1—qi = K(yi/Xo — 1)/ (35)

As before one sees that the root is unique.

The quantile-quantile plots then use the points (z,y;). We
illustrate these bounds for a selection of applications in Fig-
ure 7; the solid vertical and horizontal lines show the true
value; the line y = «x is also shown. The applications are
ftp, www, mail, and dns. These were chosen in order to give
a range or packet and flow size distributions. In all cases,
we see the bound is, as expected, mostly conservative in the
sense that 1y; > x; for x; > X and y; < x; when z; < Xo.
Some slight deviation from this rule arises for two reasons.
Firstly, the empirical median is not exactly equal to the true
value Xo, and secondly, for clarity we have plotted only 1 in
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Figure 6: Threshold Sampling of Packet Sampled Flows. Performance of Confidence Intervals by Application
Class, according to sampling parameters (1/N, z). (Top) proportion of experiments in which 5% upper limit is
violated. (Bottom) proportion of experiments in which 5% lower limit is violated. Observe that all violations

occur at a rate less than 5% per class.

every 77 quantiles and hence the jump from the upper and
lower bounding regimes in the plots is not exactly around
the median.

More interesting is the variation according to the sampling
parameters (1/N, z). Recalling the MTU of 1500 bytes, then
1/N = 0.001, the NM > z for all z € {5000, 50000, 5000000}
and hence the packet sampling error dominates the bound
and correspondingly the curve for 1/N = 0.001 roughly co-
incide. On the other hand, the curves for (0.1, 500000) and
(0.01,500000) roughly coincide, since z > N M is both cases,
and the flow sampling error dominates. Finally, the size of
the typical error is larger for larger N and z, as expected.

6. CONCLUSIONS

This paper has addressed the problem of obtaining rigor-
ous confidence intervals for estimates of network usage de-
rived from multistage sampling and aggregation schemes of
the type commonly in use in production communications
networks. We proposed the notion of generalized thresh-
old sampling which encompasses as examples a number of
sampling schemes in use and in the literature. The power of
the bound lies in its relative simplicity, being an exponential
function of the maximum generalized threshold of any sam-
pling stage. Our multistage scheme covers three important
examples: sampling of NetFlow aggregates of packet sam-
ples, Sample and Hold, and Flow Slicing which we represent
as a multistage sampling trees.

Future work will attempt to encompass the constrained
sampling schemes, in particular priority sampling [11] and
adaptive and stepped versions of NetFlow and Sample and
Hold [5]. A further challenge is the incorporation of uni-
form sampling at nodes other than the leaf nodes; although
we have provided a bound for multistage sampling with ar-
bitrary occurrence of uniform sampling, we expect that a
tighter bound is possible.
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7. MULTISTAGE SAMPLING BOUNDS:
MATHEMATICAL DETAIL

7.1 Bounding Functions and Their Estimates

In establishing bounds for exponential moments of S (x)
we shall employ a bounding function which captures the in-
terpretation of 8, 7, as thresholds. Define f : R x [0, 00)* —
[0, 00) by

1+ a(e? —1)/r, x<6

e, x>0

fO,z,6,7) = { (36)

and then its d-dimensional analog h : Rx [0, 00)3¢ — [0, 00)%:

h(0,2,8,7) = (f(8,2,6, 7). (6,26 7))
(37)
Here we extend by continuity the function (e’” —1)/7 to the
value € as 7 — 0. We will sometimes refer to the compo-
nents of h as (h(i)). Inequalities involving h will always be
understood componentwise. The main interpretation of h
as bounding exponential moments comes in Theorem 4(iii)
below. The properties under aggregation and sampling es-
timation are in parts (i) and (ii) respectively; (iii) follows
from (ii) as a special case.
THEOREM 4. (i) Let @ = Y7 a@; € [0,00)" with
mé-l) > 0. Then for each i

16, x(i)7 5(077.(1')) < H 18, x;”, 5(0’7.(1')) (38)
j=1
and hence, componentwise in h,

h(e, €, 67 T) < H h(97 Ljy 67 T) (39)
j=1

(”) E[h(97 Sp(w)7 57 T)] S h(@, Z, max{(s? 617}’ ma'X{Tv TP});
componentwise, where the mazximum is also componen-
twise.
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Figure 7: Quantile-Quantile plots for bounds vs. empirical distributions. Top Left: ftp. Top right: www.

Bottom Left: mail. Bottom right: dns

(ii3) Elexp(0Sp(x))] < h(0,x, 6y, Tp), componentwise.
The proof of Theorem 4 will require the following lemma;:

LEMMmA 1.
creasing.

(i) For all € R, z — (* —1)/z is nonde-

(ii) For all @ € R and z,0,7 >0, €% < f(8,2,6,7).

ProOOF. (i) The derivative of z — (% —1)/z is (1 +
e’*(8z — 1)) /2% which is nonnegative since e™¥ > 1 — y for
any y € R, which rearranges to 1 +¢e¥(y — 1) > 0.

(ii) From definition (36) we have equality if z > §. Other-
wise we have x < § < 7 and the result the follows from part
(i) of this Lemma. [

PROOF OF THEOREM 4. (i) First assume x > 9.
Then f(z) = & = II; e’®i. The result the follows from
Lemma 1(ii).

Henceforth assume 0 < x < §. Observe 1+z(e?” —1)/7 <
[I— (4= (e’” —1)/7). For an inductive proof of the pre-
ceding statement: assume {a; : j = 1,2,...} with either all
aj >0oralla; € [-1,0]. IfJ[7_, (1+a;) > 1+> 7, a; then
[ (4 a) > A +an)(1+ X0 a5) =1+ 375 a; +
ant1 371 a5) 2 1+ 300 a;.

118

Thus f(0,z,6,7) <[[}_, 9(0,2;,9, 7, x), where

L4z’ —1)/2, z<34

9(07$j7677'7x):{ e 7 1‘25

(40)

Oz
Since the z; > 0, x; > ¢ implies * > ¢ and hence
g(0,x;,8,7) = €’®i. On the other hand, if z; < § then
z; <7 and by Lemma 1, e’® <1+ x;(e’” —1)/7. This es-
tablishes that ¢g(0,z;,0,7,2) < f(0,,x;,9,7), and the result
follows.

(ii) Consider the first component of E[h(0, Sp(x), 8, 7)] and
for brevity denote z = M, § = 6 and 7 = 7M.

]

ERM (6, Sp(x), 8, 7)
(97 07 57 T) + p(w)f(9> .T/p(il?), 67 T)

(1 —p(x)f

1+ p(@) (£(6.2/p(a).6,7) ~ 1) (41)
Ly o/p(@) <
{ L p@) (@7~ 1), afp(e) 2 )

In the second case of (42), if x < 6,, z/p(x) < 7, and so by
Lemma 1 p(x)(e?®/?@® — 1) < z(e”® — 1)/7,. On the other
and, if > 8,, p(x) = 1 and so 1+ p(x)(e’*/P® — 1) = b=,



Hence

B[R (0, Sy (=), 8, 7)]
69 max{7,Tp} _ 1

1 e -1
T max{7,7p} ’

e, x > max{d, dp}
(6, z,max{4, 6, }, max{r, 7 })

z < max{d, p}

IN

(43)

(44)

(iii) follows as a special case of (ii) since h(¢, Sp(x),0,0) =
exp(0Sp(x)). [

7.2 Bounding Exponential Moments of
Sampling Processes.
M)

When k is a descendant of j let 7, = (7 k,...,T;i))
denote the componentwise maximum of the thresholds 7/

on the path from j to k, excluding 7, i.e.,

( ) i)
Tk ’k'ef&)md Tk’}

7\) = ma (45)
The thresholds d;; are defined similarly. Similarly to (10)

we define

o = Jmax & (46)
Define
F(0,2,7) = exp(x(e’” —1)/7) (47)
THEOREM 5. (1)
E[n(0, Xk, 6, T){ X : j € c(k)}]
< I »0, X;, max{s,6;}, max{r,7;}) (48)

j€c(k)

(i1) E[h(0, X, 8, 7)] = h(0, Xk, 8, 7) if k € R, and other-

wise
E[h(0, Xk, 4, T)]
< H h(evvamaX{év (Sk,j}vmax{‘rv Tk,]})(49)
JER
(i3) For eachi={1,...,d},
) < [ 0,505, 77) < Fo, X§0, 77
kER
(50)
PROOF. (i)
E[h(0, Xk,é )| X0, 5 € c(k)]
= E[n(9, Zs ),8,7)| X, 5 €clk)]  (51)
j€c(k)
< E[[] 10, 8;(X;),8,7)X;,5" €c(k)]  (52)
j€c(k)
= ]I ElF0.5i(X)).6.7X;] (53)
j€c(k)
< H h’(ea Xj7max{6a 5j}vmaX{Tv Tj}) (54)
j€c(k)
(51) — (52) uses Lemma 1(ii); (52) — (53) uses indepen-

dence of sampling; (53) — (54) uses Theorem 4(i).
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(ii) holds trivially for leaf nodes k. We establish the gen-
eral case inductively. Suppose (ii) holds for all children k of
a node /.

E[h(0, X, 6, 7))

= E[E[R(0, X¢,0,7)| Xk : k € c(0)]] (55)

< H E[h(0, X\, max{d, &}, max{T, i })] (56)
kec(®)

< H H h(0, Xi, max{d, O, Ok, }, max{T, Tk, Tk §37)
kEc(£) i€Ry,

= H h(0, X, max{6, d,; }, max{T, 7¢:}) (58)
i€ Ry

(55) — (56) uses Theorem 4(ii); (56) — (57) is the assump-

tion on ¢(£); (57) — (58) is just a rearrangement.

The first inequality in (iii) is just the componentwise ver-
sion of (ii) in the special case d = 7 = 0 since h(6,x,0,0) =
(e @ ). The second inequality (iii) then follows from
Lemma 1 and the fact that for 7 > 0,

f0,z,6,7) < F(0,z,7), (59)

This follows since nei-

O

PrROOF OF THEOREM 1. It suffices to prove for'the root
node k = 0. The Chernoff Upper Bound for Xél) follows
from Theorem 5(iii):

(extending by continuity to 7 = 0).
ther 1+ z(e’” — 1)/7 nor €™ exceed F(0,z,T).

Prix{? > (14 0) X" (60)
(i) 7 (1)
< inf E[eGXO ]e_(1+0)6X0 (61)
0>0
. > (4) % 1
< infexp(Xy' (—F=—) — (14 0)0) (62)
0>0 7:(50
(1) /(i)
= K(o)% /7 (63)
The lower bound is similar. [
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